UCN from electron linac?

- n flux
- γ -ray heating from beam
- γ -ray heating from residual activity

Photoproduction of n's from (γ,n) is from GDR excitation

$$\sigma \propto {
m NZ/A} \sim {
m Z}$$

For W $\sigma(\gamma,n) \sim (\gamma,2n) \sim$ 200mB $\sim \sigma(\gamma,f)$ for U Berman and Fultz RMP 47 (1975) 713

W. Diamond NIM A 432 (1999) 471

• 2x gain from fission But fission will make more γ 's from activity (see below) and also dissipate extra ~ 200 MeV from fission fragments 7 n's 500 MeV p; 0.1 n per 50 MeV electron

So 50 μ A p's at 500 MeV makes $2x10^{15}$ n's equivalent to 14 mA at 50 MeV electrons

Need even more with converter? See Beene talk for practicality

γ -ray heating of aluminum superfluid He vessel

• Masuda PRL 89 (2002) 284801 lists this as main advantage of spallation over reactor

7n's per proton: how many γ 's ? I guess 3x more γ 's than n's per proton So maybe the ~ 20 MeV γ -ray beam is actually competitive

• Residual activity from $W(\gamma,n)$ makes 100 day $t_{1/2}$ isotopes with ~ 0 γ 's produced;

Much better than spallation in residual activity (how important is this?)

Evans The Atomic Nucleus

Best transmission through Pb is at ~ 2 MeV 20 MeV $\gamma \rightarrow e^+ e^- \rightarrow 2$ 511's and a few more γ 's.

• Needs a real simulation

Summary: I can't kill this with pencil, paper, Evans, and Leo

	$50~\mu\mathrm{A}~500~\mathrm{MeV}~\mathrm{p}$	$10~\mathrm{mA}~50~\mathrm{MeV}~\mathrm{e}^-$
${ m n~flux/sec}$	$2 \mathrm{x} 10^{15}$	$1\text{-}2\mathrm{x}10^{15}$
target power	20 kW	$500 \; \mathrm{kW}$
γ -ray heating from beam	$\sim \text{same}$	$\sim \text{same}$
γ -ray heating from activity	\sim same ?	~ 0

- Needs a lot of target/converter design
- Needs a real γ -heating simulation for beam, but this might be favorable

Potential advantages and requirements:

- Very little residual activity in W (does this matter?)
- \bullet γ -beam heating smaller at 30 MeV than 50 MeV, with little loss of n's (Shane says linac tunable, no problem)
- Macroscopic duty cycle presumably flexible

Discussion: Masuda says that ' γ -ray heating' is primarily from neutron absorption, not from the spallation proton beam. The relevance of the treatment above of other sources of γ -ray heating is therefore unclear.