UCN from electron linac ?

e n flux

e v-ray heating from beam

e v-ray heating from residual
activity

Photoproduction of n’s

from (v,n) is from GDR
excitation

o x NZ/A ~ Z

For W o(v,n) ~ (v,2n) ~
200mB ~ o(v,f) for U
Berman and Fultz RMP 47
(1975) 713
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e 2x gain from fission

But fission will make more ~’s from activity (see below) and also dissipate
extra ~200 MeV from fission fragments
7 n’s 500 MeV p; 0.1 n per 50 MeV electron

So 50 pA p’s at 500 MeV makes 2x101° n’s
equivalent to 14 mA at 50 MeV electrons

Need even more with converter? See Beene talk for practicality



~v-ray heating of aluminum superfluid He vessel

e Masuda PRL 89 (2002) 284801 lists this as main advantage of spallation
over reactor

n’s per proton: how many ~’s 7 I guess 3x more ~’s than n’s per proton
So maybe the ~ 20 MeV ~-ray beam is actually competitive

® o Residual activity from W(v,n) makes 100 day t,/, isotopes with ~ 0
~’s produced;
Much better than spallation in residual activity (how important is this?)



Evans The Atomic Nucleus
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Best transmission through Pb is at ~ 2 MeV
20 MeV v — et e~ — 2 511’s and a few more ~’s.
e Needs a real simulation



Summary: I can’t kill this with pencil, paper, Evans, and Leo

50 pA 500 MeV p 10 mA 50 MeV e~

n flux/sec 2x101° 1-2x101°
target power 20 kW 500 kW
~v-ray heating from beam ~ same ~ same
~v-ray heating from activity ~ same 7 ~ 0

e Needs a lot of target/converter design
e Needs a real v-heating simulation for beam, but this might be favorable

Potential advantages and requirements:

e Very little residual activity in W (does this matter?)

e v7-beam heating smaller at 30 MeV than 50 MeV, with little loss of n’s
(Shane says linac tunable, no problem)

e Macroscopic duty cycle presumably flexible

Discussion: Masuda says that ‘y-ray heating’ is primarily from neutron
absorption, not from the spallation proton beam. The relevance of the
treatment above of other sources of ~v-ray heating is therefore unclear.



