World wide UCN sources and Possibility at TRIUMF

Y. Masuda (KEK)

TRIUMF Aug. 1, 2007

Physics with UCN a n lifetime 885.7±0.8 s, PDG ↔ 878±0.7±0.3 s, Serebrov et al. Phys. Lett. B592 (2004) For 10⁻⁴ measurement: 50 UCN/cm³ $on \beta$ decay asymmetry For test of CKM unitarity, V_{ud} with 10^{-3} : 16 UCN/cm³ at $\tau_s = 2.6$ s

Physics with UCN 2

🔊 n EDM

 $\delta d_n \sim 10^{-28}$ cm: SUSY, Multi-Higgs, Left-Right E = 50 kV/cm, $\tau_c = 130$ s, $\rho = 300$ UCN/cm³

n-nbar oscillation

cold n beam > 8.8x10⁷ s (1994), Fréjus > 1.2x10⁸ s (1990), Kamioka > 1.2x10⁸ s (1986)

SUSY with neutrino mass and See-Saw model → 10⁹~10¹⁰ s:

 1.3×10^8 UCN/s (5×10⁵ UCN/cm³ in 40 liter) $\rightarrow 10^{10}$ s

For UCN physics

UCN density is the most important

UCN source at ILL

http://www.ill.fr/nfp/npp/Pf2.htm

UCN density at ILL

2 to 3 UCN/cm³ in an experimental bottle of E_c = 109 neV 0.7 UCN/cm³ in EDM cell

UCN density is limited by Liouville's theorem for the deceleration by gravity and Doppler effect

New generation UCN sources

New UCN sources use phonons for UCN production. UCN density is not limited by Liouville's theorem.

> He-II or SD₂ in cold n source or beam

He-II in spallation source

Spallation neutron production

E _p	n/power
3 GeV	1.2
1 GeV	1
500 MeV	0.75
400 MeV	0.62
200 MeV	0.37

K. Tesch, Radiat.Protec. Dosim. <u>11</u> (1985)165

Moderator for UCN

High Φ_n (at 1 meV for He-II): high lethargy and short mean free path at inelastic scattering, low absorption

Low γ heating

Moderator material H_2O С D_2O D_2 Be Pb 0.75 0.21 0.95 0.57 0.16 0.01 Lethargy $\xi = -ave(ln(E_f/E_i))$ = 2/(M/m + 2/3), *m*: neutron mass, *M*: target nucleus mass Mean free path 0.29 2.2 1.2 2.6 2.7 6.0 (cm) $\lambda = 1/(N\sigma_s)$ Density *N* (10²³/cm³) 1.24 0.80 0.34 0.33 0.25 0.33 Scattering σ_s (b) 103 13.6 6.8 7.0 4.8 11.3 Life time (ms) 0.21 100 177 3.46 13 0.81 $\tau_{a} = 1/(N\sigma_{a}v)$ Absorption σ_a (mb) 1.23 1.04 7.6 3.53 171 665 **y** heating

Superthermal UCN production in He-II

Coherent inelastic neutron scattering in He-II

neutron

phonon

Born approximation $d^2\sigma/dQd\omega$ $= k_f/k_i a^2 S(Q,\omega)$ $= \sigma_{coh}/4\pi \cdot k_f/k_i \cdot S(Q,\omega)$ UCN density in source $\rho = \int_{-\infty}^{E_c} \sigma_{coh}(E_{in} \rightarrow E) N_{He} \Phi_n \tau_s dE$

 Φ_n : cold neutron flux \propto proton beam power T_s : storage time depends on ³He impurity and He-II temperature

> E_c^{3/2} : volumr of momentum space E_c: maximum UCN energy

SD₂ in TRIGA reactor

Mainz 2005 1st step to FRM-2 Munich 250 MW 30 ms pulse 10¹⁵ n/s.cm² (steady 100 kW)

Jan. 2006 80000 UCN/10 liter = 8 UCN/cm³/pulse in source at E_c = 250 neV

He-II in SNS beam line

He-II or SD ₂			
		He-II	SD ₂
UCN	cross section	σ_{coh} = 0.76 b	σ_{coh} = 2.48 b
production	dispersion curve	single overlap	better overlap
Loss	$\tau_a = 1/(\rho v \sigma_a)$	Ø	0.2 s
	structure	almost vacuum	dislocation, defect ortho/para
	mean free path	>> 1 m	several cm
Extraction	Fermi potential	negligibly small	109 neV acceleration
Thermal condition	operating temperature	< 1 K	5 or 6 K
	heat conduction	excellent, no local heating	problem local heating

Source or beam

Cold neutron flux Φ_n

= 3×10^9 n/s.cm² in ILL PF1

= 1.6 x 10° n/s.cm² in the SNS ? << ILL PFI assuming cold neutron flux of 2 x 10¹²/s.cm² at the moderator surface and cold neutron guide capture rate of 1.7 x 10⁻⁴

can be 10¹²/s.cm² in the spallation source

He-II in spallation source

World status

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
Ours 100 W _{av} proton	0.9K He-II	$E_c = 90 \text{ neV}$ $T_s = 30 \text{ s}$	10 at experimental port
Grenoble 60MW reactor	Turbine	E _c = 335 neV	50 in source
SNS cold neutron beam	0.3K He-II		
Munich 20MW reactor	SD ₂		
North Carolina 1 MW reactor	SD ₂		
PSI 12 kW _{av} proton	SD2		
Los Alamos 2.4 kW _{av} proton	SD ₂		

World status

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
Ours 100 W _{av} proton	0.9K He-II	$E_c = 90 \text{ neV}$ $T_s = 30 \text{ s}$	10 at experimental port
Grenoble 60MW reactor	Turbine	E _c = 90 neV	7 in source 2~3 in experiment
SNS cold neutron beam	0.3K He-II		
Munich 20MW reactor	SD ₂		
North Carolina 1 MW reactor	SD ₂		
PSI 12 kW _{av} proton	SD ₂		
Los Alamos 2.4 kW _{av} proton	SD ₂		

World comparison

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
Ours 100 W _{av} proton	0.9K He-II	E _c = 90 neV T _s = 30 s	10 at experiment port
Grenoble 60MW reactor	0.5K He-II	E _c = 250 neV T _s = 150 s	1000 in He-II
SNS cold neutron beam	0.3K He-II	E _c = 134 neV T _s = 500 s	430 in He-II
Munich 20MW reactor	SD ₂	E _c = 250 neV	10 ⁴ in source
North Carolina 1 MW reactor	SD ₂	E _c = 335 neV	1300 in source
PSI 12 kW _{av} proton	SD ₂	E _c = 250 neV T _s = 888 s	2000 in source
Los Alamos 2.4 kW _{av} proton	SD ₂	E _c = 250 neV T _s = 2.6 s	120 in source

World comparison

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
Ours 100 W _{av} proton	0.9K He-II	E _c = 90 neV τ _s = 30 s	10 at experimental port
Grenoble 60MW reactor	0.5K He-II	E _c = 90 neV T _s = 150 s	216 in He-II
SNS cold neutron beam	0.3K He-II	E _c = 90 neV T _s = 150 s	71 in He-II
Munich 20MW reactor	SD ₂	E _c = 90 neV	2160 in source
North Carolina 1 MW reactor	SD ₂	E _c = 90 neV	181 in source
PSI 12 kW _{av} proton	SD ₂	E _c = 90 neV T _s = 888 s	432 in source
Los Alamos 2.4 kW _{av} proton	SD ₂	E _c = 90 neV T _s = 2.6 s	26 in source

Possibility at TRIUMF

Increase UCN density

 $\rho = \int_{0}^{E_{c}} \sigma_{coh}(E_{in} \rightarrow E) N_{He} \Phi_{n} \tau_{s} dE$

Increase cold neutron flux, Φ_n storage time, T_s momentum space, E_c^{3/2}

UCN transport efficiency

Ts improvement Increase storage time: x5 T_{He-II} 0.9 \rightarrow 0.8 K phonon upscattering ³He impurity \rightarrow < 1x10⁻¹⁰ $T_{3He} > 389 s$ Clean-up UCN bottle decrease diffusion loss: x2

UCN density

p beam of 500MeV 40µA on, duty 1/4

 $5 \times 2 \times 3.6 \times 51 \times 10 = 1.8 \times 10^4 \text{ UCN/cm}^3$ Ts horizontal

off

Additional factor : small loss at diffusion, x2 ? efficient UCN transfer, x2 ? transmission through window, x0.7 ? 2nd step 50 kWpeak: x2.5, D20→D2: x8

World comparison

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
TRIUMF 5 kWav proton	0.8K He-II	E _c = 210 neV τ _s = 150 s	1.8 x 10 ⁴ at experimental port
Grenoble 60MW reactor	0.5K He-II	E _c = 250 neV T _s = 150 s	1000 in He-II
SNS cold neutron beam	0.3K He-II	E _c = 134 neV T _s = 500 s	430 in He-II
Munich 20MW reactor	SD ₂	E _c = 250 neV	10 ⁴ in source
North Carolina 1 MW reactor	SD ₂	E _c = 335 neV	1300 in source
PSI 12 kW _{av} proton	SD ₂	E _c = 250 neV T _s = 888 s	2000 in source
Los Alamos 2.4 kW _{av} proton	SD ₂	E _c = 250 neV T _s = 2.6 s	120 in source

