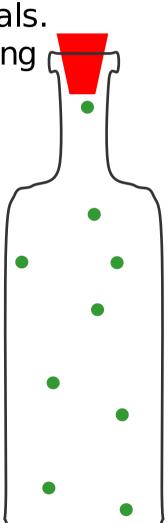
An Ultracold Neutron Source for TRIUMF

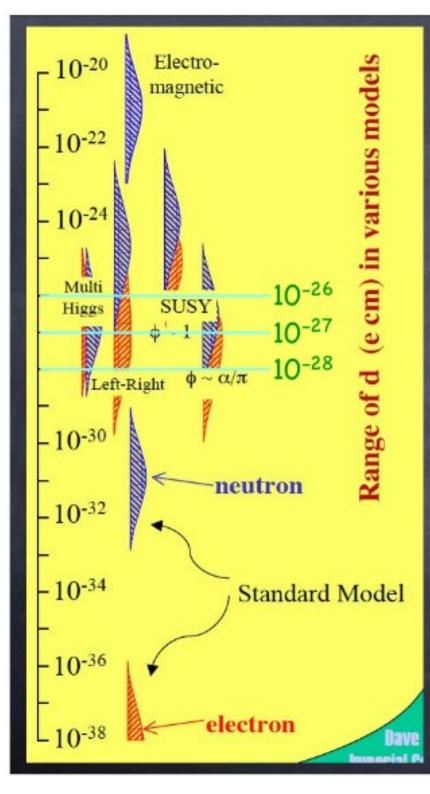

Jeff Martin (U. Winnipeg)

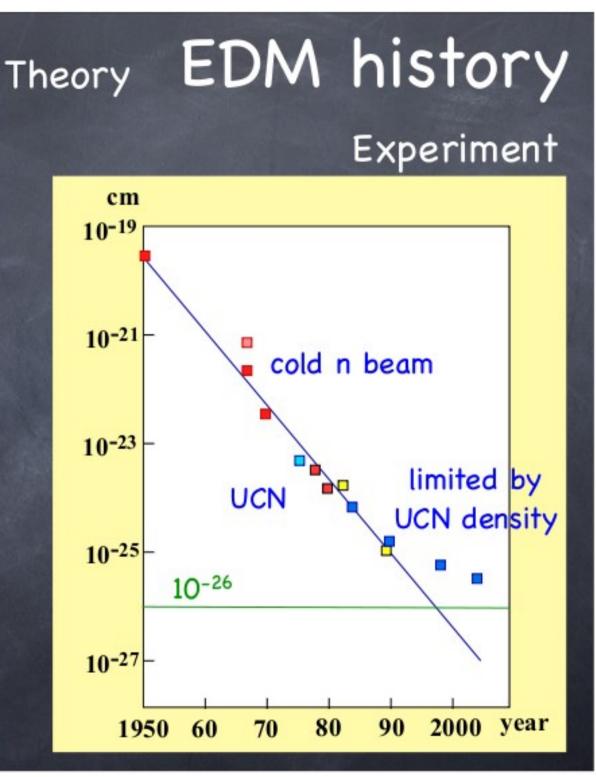
for Chuck Davis (TRIUMF), Akira Konaka (TRIUMF), Yasuhiro Masuda (KEK), and the rest of the UCN working group

- 1. UCN interactions
- 2. UCN physics experiments
- 3. Source work at RCNP and TRIUMF
- 4. CFI, relationship, collaboration, KEK

Ultracold Neutrons

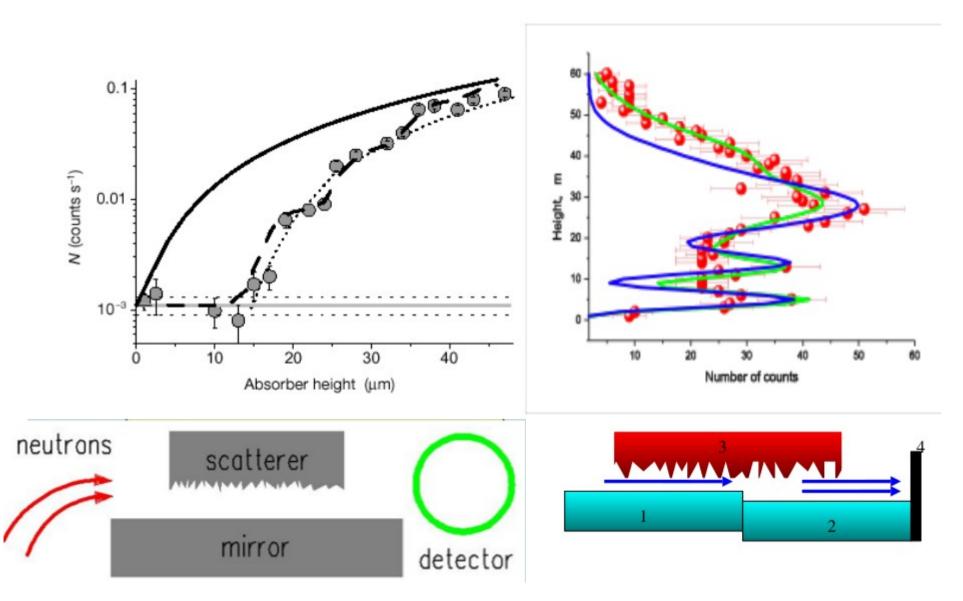
- UCN are neutrons that are moving so slowly that they are totally reflected from a variety of materials.
- So, they can be confined in material bottles for long periods of time.
- Typical parameters:
 - velocity < 8 m/s
 - temperature < 4 mK
 - kinetic energy < 300 neV
- Interactions:
 - gravity: V = mgh (h < 3 m)
 - weak interaction (allows UCN to decay)
 - magnetic fields: V=- μ •B (100% polarization)
 - strong interaction




World comparison

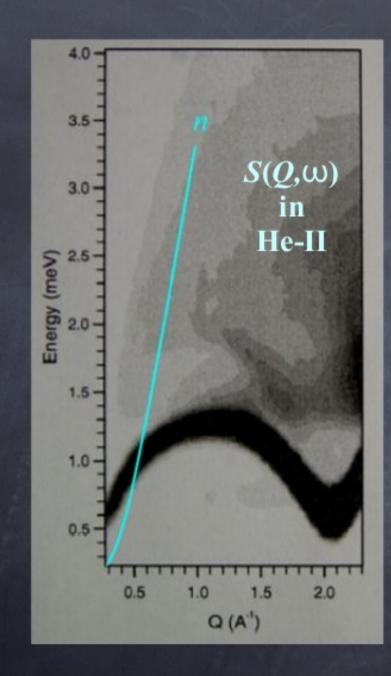
	Source type	E_c and τ_s	UCN density pucn(UCN/cm ³)
TRIUMF 5 kWav proton	0.8K He-II	$\begin{array}{l} E_c = 210 \text{ neV} \\ \tau_s = 150 \text{ s} \end{array}$	1.8 x 10 ⁴ at experimental port
Grenoble 60MW reactor	0.5K He-II	$\begin{array}{l} {\sf E}_{\sf c}=250\;{\sf neV}\\ {\sf \tau}_{\sf s}=150\;{\sf s} \end{array}$	1000 in He-II
SNS cold neutron beam	0.3K He-II	$E_{c} = 134 \text{ neV} \ \tau_{s} = 500 \text{ s}$	430 in He-II
Munich 20MW reactor	SD ₂	$E_c = 250 \text{ neV}$	10 ⁴ in source
North Carolina 1 MW reactor	SD ₂	$E_c = 335 \text{ neV}$	1300 in source
PSI 12 kWav proton	SD ₂	$E_{c} = 250 \text{ neV} \ \tau_{s} = 888 \text{ s}$	2000 in source
Los Alamos 2.4 kW _{av} proton	SD ₂	$E_{c} = 250 \text{ neV}$ $\tau_{s} = 2.6 \text{ s}$	120 in source

UCN Physics


- fundamental interactions of UCN
 - EDM
 - gravity
 - beta-decay
 - nnbar
- astrophysics
 - BBN
 - r-process
- surface physics
- development towards JPARC 2nd target station

UCN quantum states in gravity

test of gravity at 10 um scale



Surface Physics

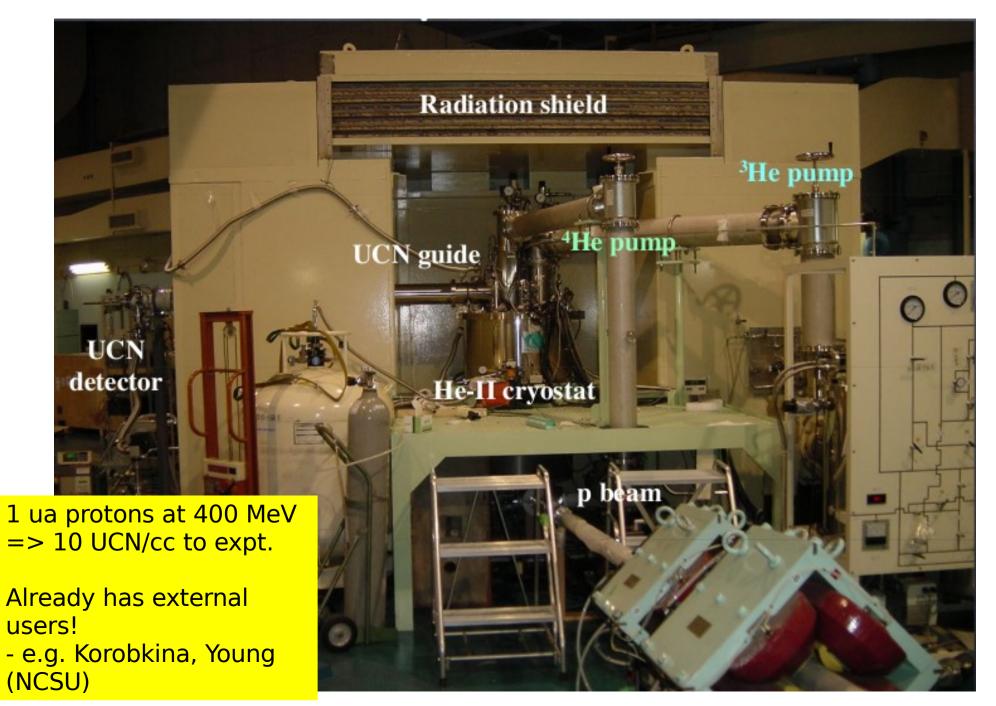
- Many ideas to use UCN to study 10 nm thin surface films
 - (n,gamma)
 - UCN loss measurements
 - n scattering
 - reflectometry
- shown to be sensitive to low-frequency excitations (interesting for surface physics)
- In all cases, lack of UCN worldwide is the problem

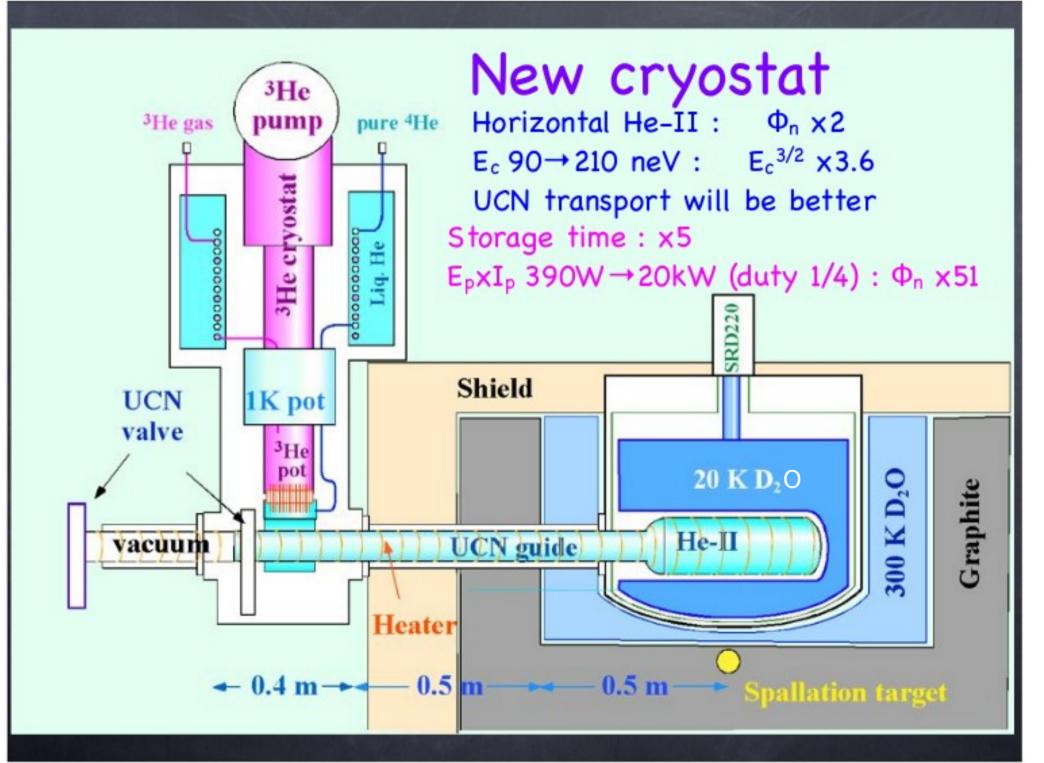
World comparison

	Source type	E_c and τ_s	UCN density pucn(UCN/cm ³)
TRIUMF 5 kWav proton	0.8K He-II	$\begin{array}{l} E_c = 210 \text{ neV} \\ \tau_s = 150 \text{ s} \end{array}$	1.8 x 10 ⁴ at experimental port
Grenoble 60MW reactor	0.5K He-II	$\begin{array}{l} {\sf E}_{\sf c}=250\;{\sf neV}\\ {\sf \tau}_{\sf s}=150\;{\sf s} \end{array}$	1000 in He-II
SNS cold neutron beam	0.3K He-II	$E_{c} = 134 \text{ neV} \ \tau_{s} = 500 \text{ s}$	430 in He-II
Munich 20MW reactor	SD ₂	$E_c = 250 \text{ neV}$	10 ⁴ in source
North Carolina 1 MW reactor	SD ₂	$E_c = 335 \text{ neV}$	1300 in source
PSI 12 kWav proton	SD ₂	$E_{c} = 250 \text{ neV} \ \tau_{s} = 888 \text{ s}$	2000 in source
Los Alamos 2.4 kW _{av} proton	SD ₂	$E_{c} = 250 \text{ neV}$ $\tau_{s} = 2.6 \text{ s}$	120 in source

M.R. Gibbs et al. (1999)

Superthermal UCN production in He-II


Coherent inelastic neutron scattering in He-II


neutron

phonon

Born approximation $d^2\sigma/dQd\omega$ $= k_f/k_i a^2 S(Q,\omega)$ $= \sigma_{coh}/4\pi \cdot k_f/k_i \cdot S(Q,\omega)$

RCNP UCN Source (Masuda, et al)

Collaboration

- led by Winnipeg, Manitoba groups
- strong KEK group who have already created a world-class facility (Masuda et al)
- well-attended working group at this townhall meeting
- UCN workshop at TRIUMF Sept. 13-14, 2007
 - world experts in attendance
- Interest in submitting a CFI proposal in 2008 from these groups

Shameless advertising

International Workshop: UCN Sources and Experiments

September 13-14, 2007 TRIUMF, Vancouver, Canada http://www.triumf.info/hosted/UCN

Registration is free, but please do register

~25 speakers from all over the world ILL, FRM-II, NCSU, LANL, PSI, KEK, Mainz, ...

Supported by TRIUMF and TUNL

Some key statements for the white paper

- e-linac in same general area (space)
- BL4 used to feed ISAC (time)
- UCN would be planned to minimize conflict with either program
- UCN source at TRIUMF would be a world-class facility
- A flagship experiment at this UCN source would impact knowledge of fundamental interactions of neutrons

Summary

- An opportunity exists to create the world's highest density UCN source at TRIUMF
- A flagship physics experiment done this facility would be world's best
- We would like to pursue this unique and timely opportunity

Shameless advertising

International Workshop: UCN Sources and Experiments

September 13-14, 2007 TRIUMF, Vancouver, Canada http://www.triumf.info/hosted/UCN

Registration is free, but please do register

~25 speakers from all over the world ILL, FRM-II, NCSU, LANL, PSI, KEK, Mainz, ...

Supported by TRIUMF and TUNL

Speakers at TRIUMF UCN Workshop Sept. 13-14, 2007

H. Abele*, Heidelberg S. Baessler, Mainz/UVa L. Buchmann, TRIUMF M. Daum, PSI S. Gardner^{*}, U. Kentucky P. Geltenbort*, ILL E. Gutsmiedl. Munich FRM-II R. Golub, NCSU B. Filippone, Caltech P. Huffman, NCSU T. Ito, LANL E. Korobkina, NCSU C.-Y. Liu, Indiana U.

M. Makela, LANL

J.W. Martin, U. Winnipeg Y. Masuda, KEK C. Morris, LANL P. Mumm, NIST I. Nico*, NIST J. Ng, TRIUMF S. Paul*, T.U. Muenchen M. Pospelov*, U. Victoria/Perimeter Inst. J.-M. Poutissou, TRIUMF W.M. Snow*, Indiana U. F. Wietfeldt, Tulane U. A. Young, NCSU O. Zimmer*, ILL

Aug. 1

morning - plenary session, charge, and introduction of working groups

12:00 lunch

13:00 Welcome + Charge (Martin) (10+5)
13:15 UCN Sources Worldwide and for TRIUMF (Masuda) (45+10)
14:10 Photofission, (gamma,n) Sources and UCN (Behr) (10+10)
14:30 coffee (30)
15:00 SCRF joint session: Electron Linac Design (Koscielniak) (20+10)
15:30 UCN Infrastructure and Proton Hall Floorplan (Davis) (10+10)
15:50 Proton Hall Radiation Limits (Trudel) (10)
16:00 Discussion (Chair: Davis) (30)
16:30 tour of proton hall? (if desired) (Davis) (30)

Aug. 2

09:00 Continued infrastructure Discussion (60) 10:00 UCN Physics Intro (Martin) (10+5) 10:15 UCN Beta Decay (Melconian) (20+10) 10:45 coffee (30) 11:15 n-EDM (Masuda and/or Hayden?) (20+10) 11:45 radioactive beams (Buchmann) (10+10)

12:05 lunch

- 13:15 gravity levels (Konaka) (5+10)
- 13:30 other physics (Martin) (15+10)
- 13:55 discussion of physics priorities and strategy (chair: Martin) (35)

14:30 begin writing

more joint sessions

draft Aug. 3 morning presentation

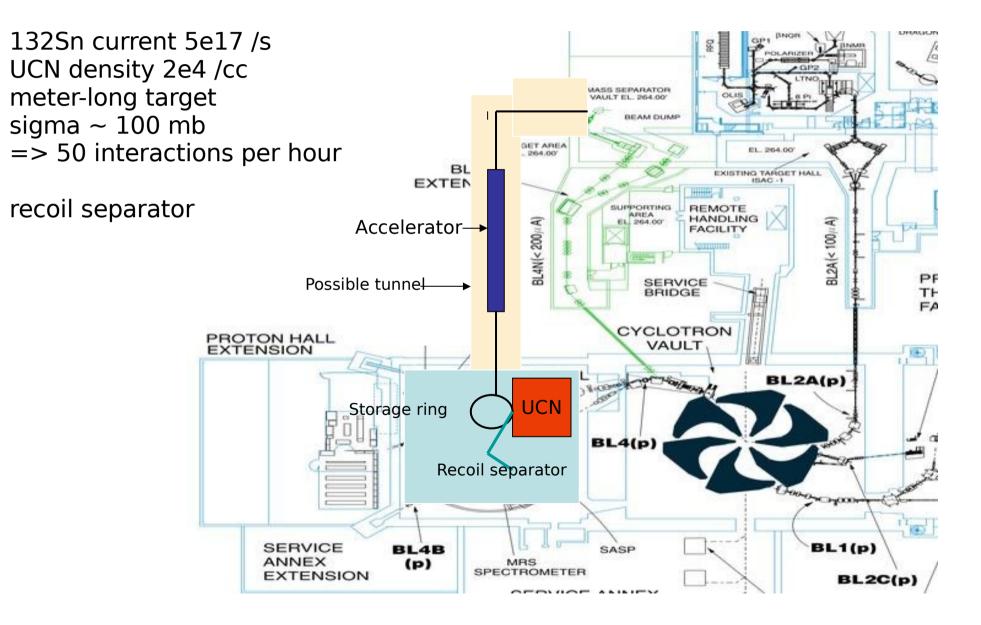
Aug. 3

morning - presentations of results from the working groups.

Agenda

Back-ups

Options considered


- for duty cycle
 - fast kicker + local beam dump in hall
- for BL4 sharing with ISAC
 - two stripper foils on same extraction probe + septum
 - difficult, more appropriate for BL1
 - other lines: BL1, BL5
 - (gamma,n) or photofission source of neutrons (Behr)
 - requires further study
- for space
 - locate UCN source in ISAC 2nd target
- for LHe
 - modest consumption 200 L/day

Outline of White Paper

- Physics
 - prioritized and realistic, as much as possible
- UCN Source
 - proposed intensity at TRIUMF
 - world context and relevance
- Required Infrastructure
 - floorspace, shielding
 - duty cycle
 - He liquefier
- Required funding
 - CFI and collaboration, and international

Measuring (n, γ) cross sections of the r-process (Buchmann)

132Sn stored in ring interacts with free neutron (UCN) target.

