Neutron Electric Dipole Moment Search with a Spallation Ultracold Neutron Source at TRIUMF

Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg)

Collaborators: T. Adachi, K. Asahi, M. Barnes, C. Bidinosti, J. Birchall, L. Buchmann, C. Davis, T. Dawson, J. Doornbos, W. Falk, M. Gericke, R. Golub, K. Hatanaka, S. Jeong, S. Kawasaki, A. Konaka, E. Korkmaz, E. Korobkina, L. Lee, R. Mastumiya, K. Matsuta, M. Mihara, A. Miller, T. Momose, W.D. Ramsay, S.A. Page, H. Takahashi, K. Tanaka, I. Tanihata, W.T.H. van Oers, Y. Watanabe

(KEK, Titech, Winnipeg, Manitoba, TRIUMF, NCSU, RCNP, UNBC, UBC, Osaka)

Antimatter Puzzle

"The Baryon Asymmetry of the Universe"

- Just after the Big Bang, there were equal parts matter and antimatter.
- Why is there so little antimatter in our universe today?
- Or, why is there any matter at all?

CP violation

- CP symmetry: Take all particles and change them to their antiparticles (C). Then reflect all coordinates through the origin (P). The laws of physics should be the same.
- If CP symmetry is *violated* then physics is not the same for particle and antiparticle.
- Hence we can have different numbers of them

strange

today.

- CP viol. discovered 1964
- But not enough of it.

Searches for new sources of CP violation.

- People looking very closely at strange and bottom quarks – still not enough CP violation.
- Another method: If E = mc² is correct, then time-reversal symmetry (T) is the same as CP symmetry.
- Very precise test of time-reversal symmetry: search for a non-zero permanent electric dipole moment of a fundamental particle.

Electric Dipole Moments and Time Reversal Symmetry

$$d_n \Rightarrow X \Rightarrow CP$$

New sources of CP violation are required to explain the baryon asymmetry of the universe.

EDM's and SUSY

Scale of EDM's for quarks in SUSY:

$$d_q \sim \frac{\alpha}{\pi} \times \frac{m_q}{\Lambda_{SUSY}^2} \times \sin \theta_{CP}$$
 q

• For "reasonable" values of new parameters:

$$d_q \sim 3 \times 10^{-24} e \cdot cm$$

According to neutron EDM measurements:

$$d_u < 2 \times 10^{-25} e \cdot cm \qquad d_d < 5 \times 10^{-26} e \cdot cm$$

- Unattractive solution:
 - $\Lambda_{\rm SUSY}$ > 2 TeV and/or $\theta_{\rm CP}$ < 0.01
 - "SUSY CP problem"

EDMs, the SM, and beyond

A. Ritz, M. Pospelov, et al SUSY M = 1 TeV, $tan\beta = 3$

Note: universality assumptions are now even being tested

 "n-EDM has killed more theories than any other single experiment!"

Neutron Electric Dipole Moment (n-EDM, d_n)

Experimental technique:

- put UCN in a bottle with E-, B-fields
- search for a change in spin precession frequency upon *E* reversal.

 Complementary in both physics sensitivities and experimental technique to Rn-EDM, Fr-EDM @ ISAC.

Past and Future n-EDM efforts

- Sussex-RAL-ILL expt. $(d_n < 3 \times 10^{-26} \text{ e-cm})$
 - 0.7 UCN/cc, room temp, in vacuo
- CryoEDM (Sussex-RAL-ILL)
 - 1000 UCN/cc, in superfluid ⁴He
- SNS
 - 430 UCN/cc, in superfluid ⁴He
- PSI
 - 1000 UCN/cc, in vacuo
- TRIUMF goal: 10,000 UCN/cc

Sussex-RAL-ILL experiment

Ultracold Neutrons (UCN)

MAXIMUM

Monday - Friday

 UCN are neutrons that are moving so slowly that they are totally reflected from a variety of materials.

So, they can be confined in material bottles for

long periods of time.

• Typical parameters:

- velocity < 8 m/s = 30 km/h
- temperature < 4 mK
- kinetic energy < 300 neV
- Interactions:
 - Gravity: V=mgh mg = 100 neV/m
 - Magnetic: V=-μ•B μ= 60 neV/T
 - Strong: $V=V_{eff}$ $V_{eff} < 335 \text{ neV}$
 - Weak: $\tau = 885.7 \text{ s} = 15 \text{ mins}$

New method to make UCN

- Liberate neutrons by proton-induced spallation.
- Moderate (thermalize)
 in cold (20 K) D₂O.
- Cold neutrons then "downscatter" to near zero energy (4 mK) in superfluid helium through phonon production.

High-energy Proton

Nucleus

Tungsten or Lead

KEK UCN Source (Masuda, et al)

e.g. R. Golub, et al.

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Gain Factors (40 µA @ 500 MeV):

_	Beam	energy,	power	x 70
---	------	---------	-------	------

 Production volume $\times 1.5$

x 2.5Storage lifetime

x 2 Transport eff

 $- E_0^{3/2}$ (from 90 to 210 neV) x 3.5

Goal: 10,000 UCN/cm³ in EDM cell.

- Lumi upgrade at RCNP to 10 µA allows tests thru summer 2014.
- Longer running time at TRIUMF (8 months/yr vs few weeks)

Layout in Meson Hall n-EDM Cryo experiment plant ILINE 2C1 radiation Spallation shielding 000 target + **UCN** source ILINE 2C4 LINE 1A 00 SHIELD.BOX bender kicker septum

n-EDM development in Japan

Masuda, et al. Beam tests July, December 2009, April 2010, early 2011.

Development of:

- Comagnetometers
- Ramsey resonance
- New B-field geometry
- HV, EDM cell

Ramsey Resonance Results

Dec. 2009, achieved: $T_2 \sim 300 \text{ ms}$

April 2010, achieved: $T_2 > 30 \text{ s } !!!$

becoming competitive with ILL, where $T_2 = 120 \text{ s (typ.)}$

$$\sigma\left(d_{n}\right) = \frac{\hbar}{2\alpha ET\sqrt{N}} \quad \text{(stat)}$$

Nearing state-of-the-art in low-field NMR!

- Successful demonstration of technique behind precision EDM measurements.
- Data-taking run in Feb. 2011 studies of homogeneity, stability of B-field.

n-EDM Systematics

- magnetic field variations
- leakage currents
- geometric phase effect
 - false EDM arising from B-field inhomogeneity and E x v.

(co)magnetometry

comagnetometry

false EDM (GP) effect

Xe-129 buffer-gas nuclear spin comagnetometer

- Masuda-san's idea: leak polarized Xe-129 into the EDM cell with the neutrons and watch spins precess.
- Xe-129 pressure must be large
 - Xe-Xe Collisions -> small MFP -> small GPE.
 - Ring-down signal picked up by SQUID.
- Xe-129 pressure must be small
 - Electrical breakdown at higher pressures.
 - UCN absorption by Xe-129.
- There is a range of pressures in mTorr range that seems to work! Other idea: optical pickup (Chupp).

Complementarity

Project	H ₀ field	magnetometer	EDM cell	magnetic shielding
KEK / RCNP / TRIUMF	spherical coil	129Xe buffer gas co-magnetometer	<i>small</i> T = 300 K	finemet/ superconductor
Sussex / RAL / ILL	solenoid	n at $E = 0$ magnetometer	large T ~ 0.5 K	μ metal superconductor
SNS	cosθ coil	³ He co-magnetometer	large T ~ 0.5 K	μ metal superconductor
PSI	cosθ coil	Cs multi- magnetometer	large T = 300 K	μ metal

Another major difference: our UCN source is *totally* different.

Schedule and Goals

Phase	Goals	Year
RCNP	T ₂ to 130 s, HV	2011
	New source, improved UCN density	2011-12
	Horizontal EDM experiment, improvement of UCN density in EDM cell to 900 UCN/cm ³ , SC polarizer, precision Xe comagnetometry	2012-13
	In 20 days production running, $d_n < 1 \times 10^{-26}$ e-cm	2013-14
TRIUMF	Commissioning and first experiment with same setup.	2015-16
	Further improvements to magnetic shielding, (co)magnetometry, EDM cell, detectors, $d_n < 1 \times 10^{-27}$ e-cm	2016-17
	Improvements to cold moderator, magnetic shielding, beam current, targetry, remote handling, cryogenics, (co)magnetometry, $d_n < 1 \times 10^{-28}$ e-cm	2018-

Project Status Report

 International Review held at TRIUMF Sept 20-21, 2010, quote from committee report:

"The committee strongly endorses the program and finds excellent potential for the group to contribute on a significant and competitive level to the worldwide efforts. The committee was impressed by the effort and creativity within the collaboration. The Japan-Canada UCN project has to be considered as an important research opportunity for KEK, RCNP, and TRIUMF, as well as for university collaborators to take on a leadership role in an exciting research field."

• KEK-TRIUMF-Winnipeg-RCNP MOU signed January 2011. CFI funds released.

Summary

- Neutron EDM experiment and UCN source have been developed by KEK, will be transported to TRIUMF 2014.
 Goals of 10⁻²⁶ -> 10⁻²⁷ -> 10⁻²⁸ e-cm.
- UCN source would be world-class facility for experiments even beyond EDM: e.g. Neutron lifetime, Neutron Gravity levels experiment, Neutron beta-decay, nn oscillation search, neutron-ion interactions.

Thank you!

U. Winnipeg and TRIUMF

• J.W. Martin, C. Bidinosti, C. Wiebe are TRIUMF users + new faculty in subatomic physics 2011.

Advantages of our UCN approach

- Liquid (superfluid) converter technology
 - Strong against thermal and radiation stresses
- Order of magnitude lower beam current
 - Less instantaneous radiation, heat, shielding
- Unique opportunity!
 - TRIUMF has ideal infrastructure
 - Able to develop new UCN source technology unique to all others
 - Opportunity for world's best in the future.

Advantages of our EDM approach

- Use established methods at room temperature.
- Smaller EDM cell and new DC coil geometry exploiting higher UCN density to suppress systematics.
- New Xe buffer-gas comagnetometer idea to further suppress systematics.
- Availability of new UCN source.

Add BAU relation to EDM