Electron Linac

Proposal for $1 / 2$ MW photo-fission driver based on TESLA 1.3 GHz SCRF technology

(Shane Koscielniak, 09 Nov 2007)

The requirement: $50 \mathrm{MeV} \times 10 \mathrm{~mA}=1 / 2 \mathrm{MW}$ beam power eliminated on target.

Bunch charge (pC)	8
Bunch repetition rate (GHz)	1.3
Radio frequency (GHz)	1.3
Average current (mA)	10
Kinetic energy (MeV)	50
Beam power (MW)	0.5
Duty Factor	100%
Normalized emittance ($\mu \mathrm{m}$)	$<30 \pi$
Longitudinal emittance (eV.ns)	$<20 \pi$
Bunch length (FW), inject (ps)	<170
Bunch length (FW), eject (ps)	>30
Energy spread (FW), eject	$<1 \%$

Why SCRF? High duty factor or c.w. operation inconceivable with NC cavities - for 50 MeV c.w., need 3 MW RF power!

Why 1.3 GHz and 2 K ?

Power/Length @
constant gradient =
$\frac{c E 0^{2}\left(R d c+\frac{A e^{-\frac{B}{T}} f^{2}}{T}\right)(-T+T s)}{2 £ T \eta^{2}}$

1.3 GHz SCRF cavities have been in development for >30 years, starting with 27 m long 50 MeV SCA at Stanford.

With major impetus from TESLA, technology is now mature with gradients $>20 \mathrm{MV} / \mathrm{m}$ routine.

Interior dimensions:
$23.8 \mathrm{~m}(\mathrm{E}-\mathrm{W}), 28.9 \mathrm{~m}$
($\mathrm{N}-\mathrm{S}$) - wall to wall
RF gallery $8 \times 8 \mathrm{~m}^{2}$ \square
Cryogenic: $4 \times 6 \mathrm{~m}^{2}$ \square
Electron linac alone $15 \times 3 \mathrm{~m}^{2}$

50 kw dump: $4 \times 3 \mathrm{~m}{ }^{\wedge} 2$ \square
Total footprint approx $8.5 \times 25 \mathrm{~m}^{2}$

This does includes maze; could move linac south if maze re-designed.
This does not include
 shielding of 1.5 m concrete Equipment racks \& PS: $4 \times 2 \mathrm{~m}^{2}$ \square

Shielding: shield who from what?
GANIL/SPI2/007-A = Spiral-II Electron Option Preliminary Design Study
Base radiation protection on goal of $\leq 7.5 \mu \mathrm{~Sv} / \mathrm{h}$ (so-called "Surveillance Zone")
Scenario: $1 \mu \mathrm{~A}$ localized loss at 50 MeV , leading to istotropic brehmstrahlung gives gamma flux $10^{13} \mathrm{MeV} / \mathrm{s} / \mathrm{m}^{2}$.
Produces dose equivalent of $1.24 \times 10^{7} \mu \mathrm{~Sv} / \mathrm{h}$
Requires 1.43 m high density concrete to reduce to $7.5 \mu \mathrm{~Sv} / \mathrm{h}$

WORK IN

 PROGRESS!! Interior dimensions:$24 \mathrm{~m}(\mathrm{E}-\mathrm{W}), 29 \mathrm{~m}(\mathrm{~N}-\mathrm{S})$
RF gallery $8 \times 8 \mathrm{~m}^{2}$
Cryogenic: $4 \times 6 \mathrm{~m}^{2}$
Electron linac alone $15 \times 3 \mathrm{~m}^{2}$

50 kw dump: $4 \times 3 \mathrm{~m}^{\wedge} 2$
Total footprint approx $8.5 \times 25 \mathrm{~m}^{2}$

This includes maze; could move linac south if maze re-designed.

Insert acknowledgements, if needed

