

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

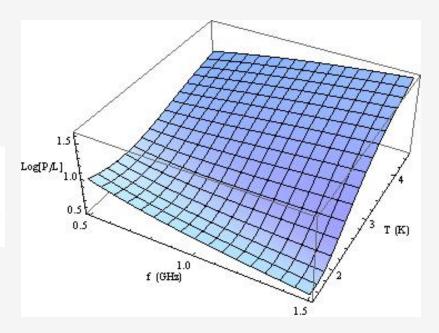
Electron Linac

Proposal for ½ MW photo-fission driver based on TESLA 1.3 GHz SCRF technology

(Shane Koscielniak, 09 Nov 2007)

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

The requirement: 50 MeV \times 10 mA = $\frac{1}{2}$ MW beam power eliminated on target.


Bunch charge (pC)	8
Bunch repetition rate (GHz)	1.3
Radio frequency (GHz)	1.3
Average current (mA)	10
Kinetic energy (MeV)	50
Beam power (MW)	0.5
Duty Factor	100%
Normalized emittance (µm)	<30π
Longitudinal emittance (eV.ns)	<20π
Bunch length (FW), inject (ps)	<170
Bunch length (FW), eject (ps)	>30
Energy spread (FW), eject	<1%

Why SCRF? High duty factor or c.w. operation inconceivable with NC cavities – for 50 MeV c.w., need 3 MW RF power!

Why 1.3 GHz and 2 K?

Power/Length @ constant gradient =

$$\frac{\text{c E0}^2 \left(\text{Rdc} + \frac{\text{A e}^{-\frac{\text{B}}{\text{T}}} \text{f}^2}{\text{T}} \right) (-\text{T} + \text{Ts})}{2 \text{ f T } \eta^2}$$

1.3 GHz SCRF cavities have been in development for >30 years, starting with 27 m long 50 MeV SCA at Stanford.

With major impetus from TESLA, technology is now mature with gradients >20 MV/m routine.

Interior dimensions:

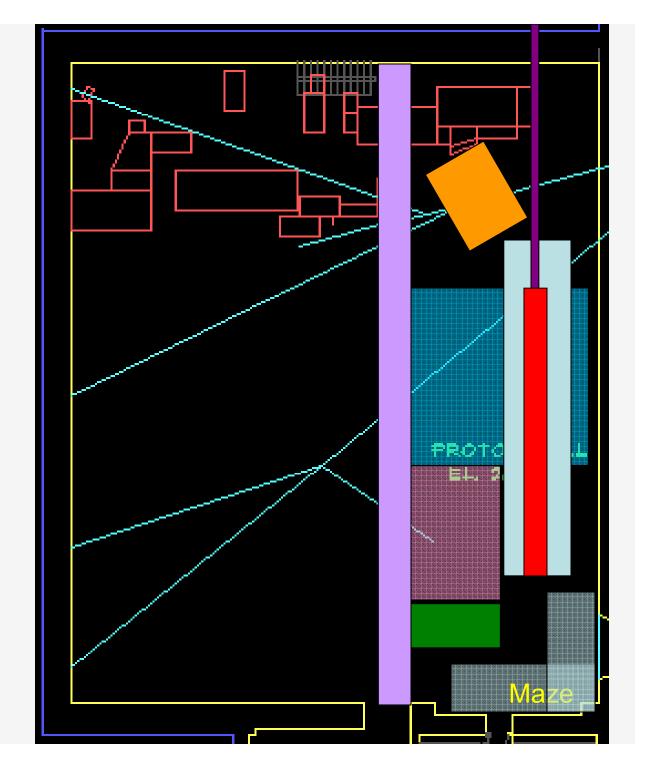
23.8 m (E-W), 28.9 m (N-S) – wall to wall

RF gallery 8×8 m²

Cryogenic: 4×6 m²

Electron linac alone 15×3 m²

50 kw dump: 4×3 m²


Total footprint approx 8.5×25 m²

This does includes maze; could move linac south if maze re-designed.

This does not include shielding of 1.5 m concrete

Equipment racks & PS: 4×2 m²

Shielding: shield who from what?

GANIL/SPI2/007-A = Spiral-II Electron Option Preliminary Design Study

Base radiation protection on goal of $\leq 7.5 \mu \text{Sv/h}$ (so-called "Surveillance Zone")

Scenario: 1 μ A localized loss at 50 MeV, leading to istotropic brehmstrahlung gives gamma flux 10^{13} MeV/s/m².

Produces dose equivalent of 1.24×10⁷ μSv/h

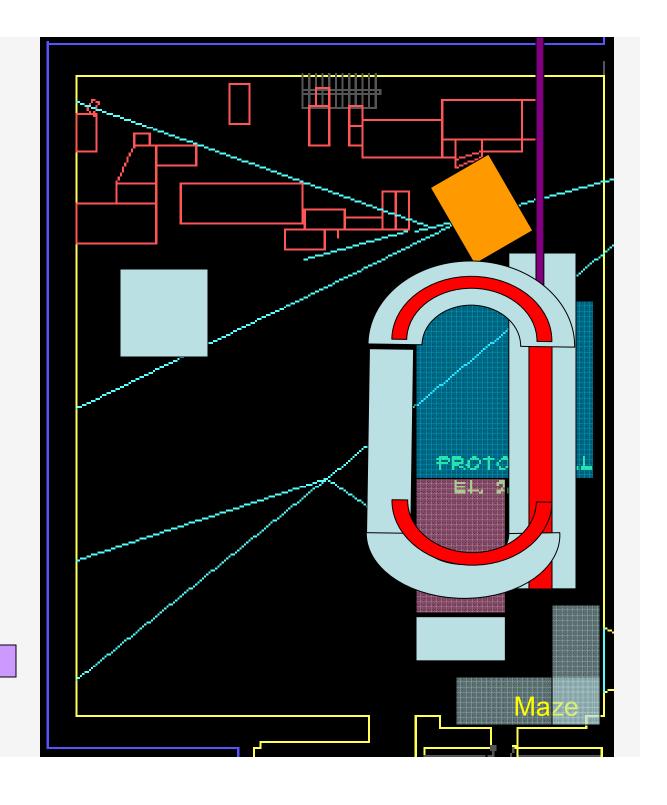
Requires 1.43 m high density concrete to reduce to 7.5 μSv/h

WORK IN PROGRESS!!

Interior dimensions:

24 m (E-W), 29 m (N-S)

RF gallery 8×8 m²


Cryogenic: 4×6 m²

Electron linac alone 15×3 m²

50 kw dump: 4×3 m²

Total footprint approx 8.5×25 m²

This includes maze; could move linac south if maze re-designed.

Insert acknowledgements, if needed

4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 Tel: 604 222-1047 Fax: 604 222-1074

www.triumf.ca