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Abstract

The Q-weak experiment is a low-energy parity violation electron-proton scattering ex-
periment which is designed to measure the weak charge of the proton (Qp

w = 1 − 4 sin2 θw)
with a combined experimental error of 4%. The standard model predicts Qp

w based on the
running of sin2 θw with four-momentum transfer Q2. In the Q-weak experiment, 1.165 GeV
electrons in a 180 µA beam scatter from a liquid hydrogen target. Elastically scattered
electrons are focused by a toroidal magnet onto 8 integrating quartz bar detectors. Track
reconstruction in the experiment is performed at currents of 1-100 nA which provides a
measurement of Q2. A focal plane quartz scanner device will be used in the experiment
to extrapolate the value of Q2 from these low beam current calibration runs to the higher
current parity violation runs at 180 µA. The scanner can also be used in tracking and back-
ground measurements. The scanner system counts coincidences observed in two overlapping
2cm by 1cm quartz radiators attached to optically isolated cylindrical light guides placed
at a 90◦ angle to one another. To understand systematic effects in the scanner which could
effect the extrapolation over beam current, a Monte Carlo simulation based on a custom
c++ code was performed. Results of the simulation will be discussed.
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Chapter 1

Introduction

1.1 Overview of the Standard Model

The standard model of particle physics is a well tested model which describes interactions
between particles. The model breaks up matter into two main categories, the quarks and
the leptons. There are six different flavors of quarks in the standard model split into three
generations. First generation quarks are the up and down, second generation are the strange
and charm quarks and third generation quarks are the top and bottom. Leptons are also
categorized into three flavors: the electron and the electron neutrino, the muon and muon
neutrino and the tau and tau neutrino. All the particles in the standard model have anti-
particle partners with the same mass and opposite charge. The interactions of these particles
are described using the following force mediators: photon (γ), gluon (g) and the W+, W−

and Z0 bosons.

All matter is made up of the fundamental particles. Quarks can combine together in
two ways: mesons and baryons. A meson is a quark (q) anti-quark (q̄) pair. A baryon is
a combination of three quarks. Combining quark compositions with leptons creates atoms
and molecules.

Though very successful, the standard model does not predict everything and there are
gaps in it’s ability to describe the subatomic world. There have been many experiments which
test various aspects of the standard model by measuring parameters with great precision. By
measuring parameters with great precision recognition of possible deviations from standard
model predictions are possible, or, barring that, tight constraints will be created on theories
of physics beyond the standard model. One parameter which has a firm prediction based on
the standard model is the weak mixing angle (θw). This parameter is an essential component
of the Glashow-Weinberg-Salam (GWS) model which unifies the electromagnetic and weak
forces into the electroweak force.
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The GWS model was first published in 1967 [2]. The theory suggests the weak coupling
constants are linked to the electromagnetic coupling constant (ge) (which in appropriate units
is the charge of the positron) by the following relations [2].

gw =
ge

sin θw

, gz =
ge

sin θw cos θw

(1.1)

Further to relating the coupling constants GWS shows that two neutral states, the B and
W , “mix” together to produce a massless linear combination the photon (γ) equation 1.2
and a massive orthogonal combination the Z0 boson equation 1.3 [2].

A = B cos θw + W sin θw (1.2)

Z = −B sin θw + W cos θw (1.3)

The standard model also predicts that the weak mixing angle, or, equivalently, sin2 θw

varies or “runs” with the energy scale (Q). The reason for the dependence of sin2 θw on Q is
that the coupling constants ge, gw and gz depend on the distance between the particles. To
explain this, consider the process of vacuum polarization, in which virtual positron-electron
pairs are created in the vacuum. A Feynman diagram representative of vacuum polarization
is displayed in Figure 1.1. The virtual pairs tend to shield the bare charge and in doing
so reduce the coupling constant. Corrections such as this cause the weak charge and hence
sin2 θw to vary with Q.

Figure 1.1: Feynman diagram for electromagnetic vacuum polarization [2]

Figure 1.2 shows the running of sin2 θw with Q. Black data points indicate previous
measurements of sin2 θw. Previous measurements come from atomic parity violation (APV),
parity violating (PV) e-e (Moller) scattering (SLAC E-158), deep inelastic neutrino-nucleus
scattering (NuTeV), and from Z0 pole measurements (LEP+SLC)[6]. The (Qp

w), labeled with
a red dot, is the value which is to be determined by the Q-weak experiment and the error
bar corresponds to a successful determination of (Qp

w) at the 4% level (combined statistical
and systematic errors). The blue line is a calculation of the running of sin2 θw and is the
prediction based on the standard model [6]. The error in the prediction is represented by
the thickness of the line. It is evident from the thickness of the line that the confidence in
the standard model prediction is high.
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Figure 1.2: The running of sin2 θw
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1.2 Electron-Proton Scattering

1.2.1 Kinematics

The tool which will be used by the Q-weak experiment in measuring sin2 θw is elastic electron-
proton scattering and a brief outline of it’s theoretical treatment is provided here. Every
physical interaction can be drawn as a series of schematic Feynman diagrams. A first order
Feynman diagram for electromagnetic electron-proton scattering is shown in Figure 1.3[2].
The vertical axis represents time and the horizontal axis position. The diagram shows an
electron with four-momentum p1 and proton with four-momentum p2 entering and moving
toward each other, they then exchange a virtual photon with four-momentum q and leave
moving away from each other with four-momenta p3 (electron) and p4 (proton).

Figure 1.3: Feynman diagram for electromagnetic electron-proton scattering

The internal line is representative of a virtual photon with four-momentum q. Con-
servation of energy and momentum at the electron-photon vertex gives q = p3 − p1. The
four-momentum transfer between the electron and the proton is defined to be:

Q2 = −q2 (1.4)

This value relates to the energy scale Q =
√

Q2 used in the previous section.

Taking the laboratory frame one has an incident electron with four momentum p1 =
(E/c, 0, 0, pz) strike an at rest proton with four-momentum p2 = (Mpc, 0). Here E is the
energy of the incident electron, pz is the momentum of the incident electron and Mp is the
mass of the proton. To simplify calculations it is also assumed that the mass of the electron
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is zero. By use of conservation of four-momentum the equation for E ′ can be determined
equation 1.5. The value for Q2 can also be determined using equation 1.6.

E ′ =
E

1 + (2E/Mp) sin2 (θ/2)
(1.5)

Q2 = 4EE ′ sin2 θ/2 (1.6)

Where θ is the scattering angle of the electron. These formulas will be used in later sections
when discussing the tracking portion of the experiment.

1.2.2 Unpolarized cross-section

Each Feynman diagram can be calculated using the rules of Feynman Calculus and con-
tributes a portion of the overall probability of the interaction. Higher order contributions in
Quantum electrodynamics (QED) are suppressed by powers of α = 1/137 (the fine structure
constant)[2]. Ultimately the differential scattering cross-section dσ/dΩ may be calculated.
Calculating the cross-section in this frame for the unpolarized case gives equation 1.7 [8]

dσ

dΩ
=

α2

4E2
[
1 + 2 E

Mp
sin2 θ/2

]
sin4 θ/2

[
G2

E + τG2
M

1 + τ
cos2 θ/2 + 2τG2

M sin2 θ/2

]
(1.7)

Where τ = Q2/4M2
p , GE and GM are form factors and θ is the scattering angle of the

electron.

1.2.3 Physical interpretation of form factors

The form factors GE and GM have an interesting physical interpretation found by taking
the Breit frame or brick wall frame shown in Figure 1.4. In the Breit frame the initial four-
momentum of the proton is pµ

1 = (Ebreit,−qbreit/2), the final four-momentum of the proton is
pµ

2 = (Ebreit,qbreit/2). Thus the four-momentum transfer in the breit frame is qµ = (0,qbreit)
[8].
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Figure 1.4: Diagram of the Breit frame

It can be shown that the form factors can be interpreted as the Fourier transforms of the
protons charge density (ρch) and magnetization density (ρmag).

GE

(
Q2

)
=

4π

Q

∫
rdrρch (r) sin Qr (1.8)

GM

(
Q2

)
=

4π

Q

∫
rdrµρmag (r) sin Qr (1.9)

Where µ is the magnetic moment and the integrand is over the nuclear volume. Therefore
in the limit as Q2 goes to zero, GE reduces to the charge of the proton and GM reduces to
the magnetic moment of the proton (in appropriate units)[8].

1.2.4 Parity violation and the weak force

In electron-proton scattering there is also another contribution due to the weak force as
shown in Figure 1.5, mediated by the exchange of a virtual Z0 boson.

Figure 1.5: Feynman diagram for weak electron-proton scattering
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Parity violation is the signature of the weak force. No other force violates parity and so parity
violation can be a powerful tool in isolating the weak contribution to various interactions.
The parity operator (P) is defined as performing an inversion operation. Inversion is the act
of reflecting a vector through the y-axis and then performing a 180◦ rotation. If one operates
twice with parity then the overall result is the same as that initial value.

1.2.5 Parity violating asymmetry for elastic electron-proton scat-
tering

The Q-weak experiment makes use of a parity violating (PV) asymmetry in electron-proton
scattering. This asymmetry is described by:

APV =
( dσ

dΩ
)+ − ( dσ

dΩ
)−

( dσ
dΩ

)+ + ( dσ
dΩ

)−
=
−GF Q2

4
√

2πα
[Qp

w + Q2B(Q2)] (1.10)

Here ( dσ
dΩ

)+ is the differential cross-section for positive helicity electrons and ( dσ
dΩ

)− is the
differential cross section for negative helicity electrons, Q2 is the negative four momentum
transfer squared, GF is the Fermi constant and B(Q2) depends on nucleon, electromag-
netic and strangeness form factors. The Q2B(Q2) factor can be accurately estimated from
extrapolation of prior experimental results. Therefore by measuring APV and Q2 we get Qp

w.



Chapter 2

The Q-weak Experiment

2.1 Experiment Overview

The Q-weak experiment will be conducted at the Thomas Jefferson National Accelerator
Facility (JLab), located in Newport News Virginia. The scheduled measurement time is
2200 hours. Measurement of Qp

w is done by measuring the parity violating asymmetry
(APV , equation 1.10) in elastic electron-proton scattering at Q2 = 0.03 GeV/c2. The goal
uncertainty in the measurement of APV is 2.5%. The goal uncertainty on Q2 is therefore
0.5%, by equation 1.10 it can be seen that APV depends almost linearly on Q2. This results
in (δA/A) = 0.5% as the contribution to an overall systematic uncertainty in APV due to Q2

determintation. Backgrounds are also to be known within 0.5% because of a similar linear
relationship with APV .

2.1.1 Parity Violating Asymmetry Apparatus

Figure 2.1 [6] shows a schematic diagram of the Q-weak experiment. In the experiment a
1.2 GeV/c 180 µA electron beam is used with 85% longitudinal polarization which reverses
helicity 150 times per second to minimize systematic effects related to the beam. The beam
impinges on a 35cm liquid hydrogen target. Electrons scattered at an average angle of 7.9◦

are selected by two collimators. The electrons then enter the toroidal magnet which focusses
elastically scattered electrons onto the main quartz Cherenkov bar detectors located behind a
final collimator. Inelastically scattered electrons are diverted out of the Cherenkov detectors’
acceptance by the toroidal field. The quartz Cherenkov bar detectors have a 200 cm x 18 cm
active area and they operate in an integrating mode.

13
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Figure 2.1: Q-weak Experiment Diagram. This Figure shows from right to left the incident
electron beam, liquid hydrogen target, collimators, focusing toroidal spectrometer magnet,
Cherenkov bar detectors and detector shielding. Also displayed are the tracking system
detectors (GEMs and tracking chambers) that are inserted for low-current calibration. The
quartz scanner is located just downstream of quartz Cherenkov bar detectors.
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2.1.2 Tracking System

As mentioned previously, it is essential to precisely determine Q2 in order to precisely de-
termine Qp

w from equation 1.10. A tracking system is used to make a direct measurement
of Q2 in order to make a precise determination of it’s value. The tracking system detectors
are slower operating detectors which operate based on ion drift followed by gas multiplica-
tion, this process can take several µs. This limits the tracking system to operation in beam
currents of 1-100 nA in order to keep the rates in the detectors at manageable levels. The
tracking system consists of three separate regions. Region 1 is located just after the first
collimator and has gas electron multiplier (GEM) detectors (indicated by “Front GEMs”
in Figure 2.1). Region 2 is located after the second collimator and contains two horizontal
drift chambers (indicated by “Middle Tracking Chambers” in Figure 2.1). Region 3 is lo-
cated after the toroidal magnet and contains two vertical drift chambers (indicated by “Rear
Tracking Chambers” in Figure 2.1).

Determination of Q2 and Backgrounds

Determination of Q2 is provided if any two of the initial energy E, final energy E ′ and
electron scattering angle θ are known. Equation (1.6) shows the relation determining Q2 [6]
and equation (1.5) shows the relation between θ and E ′. The tracking chambers in region 1
and 2 provide a measurement of θ. The initial beam energy E is known to ≤ 0.1% accuracy.
The final energy E ′ can be determined from detectors in regions 2 and 3.

2.1.3 Focal Plane Scanner

Motivation

The purpose of the scanner is to extrapolate over two orders of magnitude from the cali-
bration runs to the production runs. Similar scanning devices have been used in the E158
and Happex experiments [9], those scanners however operated in current mode in contrast
to the quartz scanner for Q-weak which operates in a counting mode. In current mode, a
DC current is constantly measured and variations are observed, whereas in counting mode
individual events are counted to create a measurement of the rate.

General design parameters

The scanner must be radiation hard since it will be exposed to a large amount of radiation.
Since quartz is radiation hard it was chosen as the radiator material for the scanner. A
small active area is required so that the scanner can operate in a pulse mode even while the



16

Cherenkov bars are exposed to very high rates. A fast response time is also important so
that the scan can be completed in reasonable time and so that the output can be correlated
to the scanner’s position. A final parameter is a short dead time to ensure accurate recording
of the rates.

2.2 Scanner Design

A schematic of the quartz scanner light tube assembly is shown in Figure 2.2. The scanner’s
active area consists of the 1×1 cm2 overlapping region of two separate 2×1×1 cm3 pieces
of radiating quartz. The quartz produces light through Cherenkov radiation as explained in
the next subsection.

Figure 2.2: Diagram of the quartz scanner’s light tube assembly
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2.2.1 Cherenkov Radiation

Cherenkov radiation occurs when a charged particle moves faster than the speed of light in
a medium. The threshold speed is given by [4]:

vthreshold = βc = c/n (2.1)

Here n is the index of refraction and c the speed of light in a vacuum. In the cases where
a particles speed exceeds this threshold an electromagnetic wave is created, similar to a
sonic boom that is created when an aircraft travels faster than the speed of sound in air. A
coherent conical wavefront is emitted as shown in Figure 2.3 [4] and it has a well defined
angle with respect to the particles trajectory given by

cos θC =
1

βn(ω)
(2.2)

Figure 2.3: Cherenkov Radiation

2.2.2 Light tube assembly

In order to detect the light produced by the Cherenkov effect in quartz two optically isolated
light guides are used. The guides are placed at a 90◦ angle to each other and have lengths of
60 cm. Each light guide consists of a 5 cm cone emanating from the quartz which then forms
a 5 cm diameter tube which has an interior of reflective Miro 2 from Alamond Goubtt &
Co. Light created in the quartz radiator is transported the length of a given light guide to a
quartz window photomultiplier tube (PMT), Photonis model #2248. The length of the light
guides is long enough such that when in the experiment the PMTs are out of the fiducial
area of the experiment where scattered electrons would be present. The design is such that
the detection of events is rapid with small dead time and the active area is small allowing
the scanner to operate in a highly efficient counting mode with low background.
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2.2.3 Motion assembly

In order to scan over the desired 200×18 cm2 fiducial area of the Cherenkov bar detectors a
linear motion assembly is employed. An image displaying the scanner placed on the motion
assembly is shown in Figure 2.4. The motion assembly consists of x and y linear motion
stages.

Figure 2.4: Photograph of the partially complete scanner, in the Lab at University of Win-
nipeg

2.3 Scanner Operation

The scanner’s 1×1 cm2 active area will be moved by the linear motion assembly until it has
covered the large Cherenkov bar’s area. Coincidences will be detected and correlated with
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the position given by the encoders on the motion assembly and used to generate a rate map
characterizing the rates in a 2-D space located directly behind the Cherenkov bar detector.
A schematic picture of one location of the scanner in the experiment can be seen in Figure
2.5

Figure 2.5: Schematic picture of the experiment showing the quartz scanner in the upper
octant (Octant 1). The image on the right shows the characteristic mustache pattern formed
by elastic events in the large Cherenkov bar detectors, it is this pattern which is mapped by
the scanner.

2.3.1 Tracking parameter extrapolation methodology

To perform the extrapolation of Q2 from calibration current to production current the fol-
lowing procedure will be used. First a 1 nA beam current is used with the full (GEM, HDC,
VDC) tracking system to determine the value of Q2 from track reconstruction. Then a beam
current of 100 nA is used to cross calibrate the scanner against the vertical drift chambers
in region 3. The 100 nA current is acceptable to the region 3 VDC’s in terms of rate, and is
large enough so that the very small active area of the scanner will see sufficiently large rate.
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During production a current of 180 µA is used and the rate map from the scanner at this
current is compared to those created at 100nA. Confidence in this comparison depends on
several systematic effects in the quartz scanner which are rate sensitive.

2.3.2 Systematic effects on extrapolation

To properly implement the quartz scanner in the Qweak experiment systematic effects which
affect the confidence in the rate map must be examined and quantified. These effects are
accidental coincidences, backgrounds and dead time.

Accidental Coincidence

A coincidence technique is used to signify the passage of an electron through the scanner’s
active area. To cause a coincidence the electron must produce light in both pieces of quartz
and that light must be detected by the photomultiplier tubes (PMTs). An accidental coin-
cidence occurs when two uncorrelated particles happen to give a signal to each PMT in a
time window τ . For example an electron can pass through one of the light guides creating
scintillation photons in the air core of the light guide while within the coincidence time win-
dow τ another electron passes through the other tube producing a signal in it. The rate of
accidental coincidences A can be calculated using [4]:

A ∼= τN1N2 (2.3)

Where N1 is the singles rate in tube 1 and N2 is the singles rate in tube 2. Also assumed
is that N1 and N2 are stable in time. The singles rate is the rate seen by one PMT or the
other. The coincidence rate differs in that both PMTs must each see an event within the
coincidence time window τ . Accidental coincidences tend to increase the detected coincidence
rate erroneously by an amount equal to A. High rate coincidence experiments must therefore
minimize and correctly account for this systematic effect.

Dead time

Dead time is the time in which a detector is unable to respond due to a finite recovery time
after a prior detection. This occurs when two distinct particles strike the detector within a
time interval τdt and hence can not be resolved. When this occurs the detector misses the
second event resulting in a detected rate which is lower than the actual rate. Dead time is an
intrinsic property of a detector. The relationship between true rate Rtrue and the measured
rate Rmeasured is shown in equation 2.4

Rtrue =
Rmeasured

1− τdtRmeasured

(2.4)
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The effect of dead time is to decrease the measured rates artificially from the desired
true rate.

2.3.3 Other uses for the scanner

The scanner can also be used in background determination. Backgrounds can be created
by inelastically scattered electrons and scattering of electrons from other objects in the
experiment such as the coils, as well as the general background that exists in the experimental
hall. These backgrounds can produce light in the quartz scanner as well as in the large quartz
Cherenkov bars. These backgrounds can be partially characterized by the quartz scanner.
Backgrounds are detrimental since they provide signal which is not related to elastic electron-
proton scattering. The advantage of the scanner in this regard is that its scan range is larger
in size than the fiducial area of the tracking system, particularly the region 3 VDC’s. The
scanner could, for example, scan well into the inelastic region indicated in Figure 2.5, so that
extrapolation of inelastic contamination of the elastic focus could be inferred through use of
a fitting technique.

2.3.4 Scan rate and pattern

The scanning pattern and scanning speed are important variables since they effect the num-
ber of counts used to determine the rate. The variables of interest in determining scan
pattern and rate are the helicity reversal speed of 150 Hz, the coordination with output of
location from the motion assembly and statistical concerns.



Chapter 3

Simulations

3.1 Overview of Simulations

The simulations of the scanner in the experimental setup were coded in c++. The simulations
use the Monte Carlo method to calculate the rate values for each location on the rate map.
The methods used in simulations are explained in the following sections.

3.1.1 Input rate map

The input to the simulation consisted of a text file containing the coordinates and rates in
the focal plane of the Q-weak spectrometer (at the site of a quartz Cherenkov bar detector).
The initial rate map was created by a simulation of the Q-weak experiment at 180µA [10].
The text file was read into the simulation and was referenced in order to determine the rate at
any location. The rate map was binned into 1×1 cm squares which cover the full 200×18 cm2

large quartz bars. The input rate map is shown in Figure 3.1, the colors represent the rate
in units of MHz/cm2. Note that in this Figure, and in several that follow, the bins have a
definite aspect ratio, i.e. each rectangle represents a 1×1 cm2 bin.

3.1.2 Coordinate transforms

The coordinates and single tube geometry in the simulation are shown in Figure 3.2. The
main coordinate system is a cartesian coordinate system with it’s origin in the lower middle
of the 200×18 cm2 active area of the Cherenkov bar detectors. A primed coordinate system

22



23

Figure 3.1: Input rate map for current of 180 µA, note the aspect ratio is skewed, each
rectangle represents a 1×1 cm2 bin, the color map represents the MHz/cm2
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is created for each tube with its origin at the center of the quartz furthest from the PMT
as shown. The transformation into this primed frame is given by equations 3.1 and 3.2. To
define the coordinate system of the tube shown the x′ transform is reflected through the
y-axis, in this way both tubes had their own coordinate systems.

x′ = − [(x− qx) sin θ + (y − qy) cos θ] (3.1)

y′ = − (y − qy) sin θ + (x− qx) cos θ (3.2)

Where x and y are the coordinates of the point to be transformed and (qx,qy) is the
location of the center of the quartz in the unprimed system.

Figure 3.2: This schematic shows the coordinate system for the rate map and the primed
system for one scanner tube, the location of the center of the quartz in the unprimed system
is defined by the point (qx,qy). Note that two different aspect ratios have been used for the
two systems in the interest of clarity.

3.1.3 Individual light tube response function

To determine the light output from an electron striking various locations on the scanner
a light response function was used. If the electron struck the quartz it was taken that 10
photoelectrons were produced, striking the cone produced 0.1 photoelectrons and striking
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the tube produced 0.01 photoelectrons. These values for the number of photoelectrons
were determined from a simulation of tube response [7] and refer to the mean number of
photoelectrons (Np.e.) detected by the PMT for the relevant tube. For these simulations it
was assumed the response was uniform in y′. This is an oversimplification of the response of
a cylindrical light guide and could be modified in future work.

Using the method described in the next section to determine efficiencies a plot of the
efficiency weighted rate for one tube was plotted, see Figure 3.3.

Figure 3.3: The efficiency weighted rate for a tube at the coordinate (0,10), the color scale
was arbitrary chosen to effectively demonstrate the tube response

3.1.4 Poisson distribution

The Poisson distribution can be used to find the probability of detecting γ photoelectrons
for given event given the mean number of photons created in the event (Np.e.). The Poisson
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distribution is given in equation 3.3

P (γ) =
Nγ

p.e.e
−Np.e.

γ!
(3.3)

By subtracting from 1 the terms for γ > 1,2,3 the efficiencies for thresholds 1,2 and 3 are
given. Threshold one gives the probability of seeing at least one photoelectrons given the
number created, threshold two means seeing at least 2 photoelectrons and threshold 3 at
least 3 photoelectrons. Using this result equation 3.4 determined the efficiency for each
point based on the number of photoelectrons.

εNthr
(≥ Nthr) = 1−

Nthr−1∑
γ=0

P (γ; Np.e.) (3.4)

Where γ is the number of photoelectrons detected by the tube, Np.e. is the number created
in the tube and Nthr is the threshold number. For threshold 3 the efficiency (ε3) becomes:

ε3 = 1− e−Np.e. − (Np.e.) e−Np.e. − 1

2
(Np.e.)

2 e−Np.e. (3.5)

3.2 Description of the Monte Carlo method

The goal of the code is to integrate the rate seen by the quartz scanner for every 1x1 cm2 bin
that it scans over in the course of scanning the active area of the Cherenkov bar detectors.
To perform this integral a Monte Carlo method was used.

3.2.1 Monte Carlo principle for a single scanner tube

Consider a particular location for the scanner (qx, qy). In the simulation an event consists
of generating a random point (x,y) within the 200×18 cm2 area described by the unprimed
coordinate system. The rate for the random point is looked up in the input rate map.
The point is then transformed into the primed detector coordinate system as described in
equations 3.1 and 3.2. From this information it is determined if the point is within the
scanners area and what the corresponding efficiency is. If the location was outside of the
scanners area it was given a zero efficiency value. This process of random point generation
is then repeated. The singles rate for each tube and the coincidence rate was summed for
every randomly chosen point (x,y). Similar efficiency weighted singles rates and coincidence
rates were also found. After the completion of many events the results for a given rate of
interest was calculated using equation 3.6.

R =
ARs

n
(3.6)
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Where R is the rate of interest, A is the area in which random points were chosen, Rs is the
summed rate and n is the number of random points chosen. The value R is the solution to
the rate integral for a single (qx, qy)which was the goal of the Monte Carlo.

3.2.2 Simulation of a scan

The completion of a scan in the simulation consists of moving the scanner to every 1×1cm2

bin and performing the calculation described in the previous section to determine the rate
for each location. Figure 3.4 displays the result of such a scan with the threshold set as
threshold 1 and the beam current being 180 µA. This figure can be compared to the input
rate map shown in Figure 3.1.

Figure 3.4: The result of a scan at threshold 1 and beam current 180µA, the color map
represents MHz/cm2
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3.3 Code capabilities

3.3.1 Variability of threshold

For the purposes of the simulations presented in this thesis the method discussed in the
Poisson distribution section was implemented to provide 3 threshold values corresponding
to observing at least 1,2 or 3 photoelectrons respectively.

3.3.2 Variability of beam current

The input rate map is given for a beam current of 180 µA, to have the current change in
the simulation the input values must simply be multiplied by the appropriate factor. For
example to go from 180 µA to 100 nA one would divide by 1800.

3.3.3 List of variables

Here is a list of variables available in the simulation output data file:

• qx coordinate

• qy coordinate

• efficiency in tube 1

• efficiency in tube 2

• singles rate in tube 1

• singles rate in tube 2

• efficiency weighted singles rate in tube 1

• efficiency weighted singles rate in tube 2

• perfect coincidence rate

• efficiency weighted coincidence rate

In addition to the above, event level information can also be accessed in special runs where
the scanner location is fixed. This can be useful for debugging purposes as well as identifying
problems with the light tube design. From now on we use x and y to denote qx and qy in
plots and notation.
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Results

Throughout this section there are displayed various plots in which the aspect ratio is skewed
in the vertical direction. When reading these plots note that each rectangular bin actually is
representative of a 1×1 cm2 bin. The units which determine the color values in the plots are
those of d2R

dxdy
, most commonly in MHz/cm2. As well when referring to tubes 1 and 2, tube 1

is the tube which is in the negative x region when the scanner is located in the center of the
unprimed coordinate system, refer to Figure 3.2 which shows tube 2. A “tube” constitutes
one of the pieces of scintillating quartz and a light guide leading to a PMT.

4.1 Study of accidental coincidences

As discussed in the systematic effects section, accidental coincidences are an important
effect which needs to be characterized. The goal of this study was to investigate the effect
of threshold and beam current on the accidental coincidence rate. To do this the accidental
coincidence rate was calculated and expressed as a percentage of the true coincidence rate
for a detector with perfect efficiency and time resolution.

4.1.1 Singles rate map

The formula for percent accidental coincidences involves the use of the singles rate. A plot
of the singles rate in tube 1 is shown in Figure 4.1

From this plot note that the maximum singles rate is 2.5 MHz. Trends follow the input
rate map (Figure 3.1), but rates at approximately 14-18 cm are drastically increased due to
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Figure 4.1: Threshold 1 rate map showing the singles rate in tube 1 at 180 µA, the color
map represents MHz/cm2
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backgrounds arising from the air-core light guide.

4.1.2 Estimate of accidentals

The formula for percent accidental coincidences involves the use of the singles rates in both
tubes. Since the rate map is nearly symmetric an estimate for accidentals can be made using
the singles rate from one of the tubes, in this case tube 1. From Figure 4.1, the maximum
singles rate in tube 1 is 2.5 MHz. Using equation 2.3 with τ = 0.02µs one gets A = 0.125
MHz. This corresponds to 5% of the measured rate.

4.1.3 Accidental coincidence map threshold 1

Performing the same calculation using the rates from each tube and results for the whole
rate map gives an accidental coincidence rate map. To compare the accidental coincidence
map to the true coincidence rate map the ratio of the two was taken and expressed as a
percentage. The result is shown in Figure 4.2. It can be seen that the percent accidentals is
typically 30 % in regions of high rate.

The high singles rates observed for threshold 1 are created by large backgrounds in
the regions where the average number of created photo electrons (Np.e.) is 0.01. Raising the
threshold should suppress the accidental coincidence rate.

4.1.4 Accidental coincidence map for thresholds 2 and 3

The suppression of accidentals rate is observed in the results for thresholds 2 and 3 displayed
in Figures 4.3 and 4.4 respectively. The maximum percentage of accidental coincidences is
7% for threshold 2 and 6% for threshold 3.
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Figure 4.2: Threshold 1 map showing percent accidentals at 180 µA, the color map represents
the % of accidental coincidences relative to the perfect coincidence rate
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Figure 4.3: Threshold 2 map showing percent accidentals at 180 µA, the color map represents
the % of accidental coincidences relative to the perfect coincidence rate
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Figure 4.4: Threshold 3 map showing percent accidentals at 180 µA, the color map represents
the % of accidental coincidences relative to the perfect coincidence rate
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4.1.5 100 nA accidental coincidence map

Also of interest was how the accidental coincidence map would translate to a beam current
of 100nA. Figure 4.5 shows the accidental coincidence map as a percentage of perfect coinci-
dences for threshold 3 and beam current 100nA. As expressed the percentage of accidentals
is much lower at 100 nA than at 180 µA, reaching only to 0.02% of the true coincidence rate.

Figure 4.5: Threshold 1 map showing percent accidentals at 100 nA, the color map represents
the % of accidental coincidences relative to the perfect coincidence rate

4.2 Relationship between coincidence efficiency and ac-

cidental coincidence rates

It was found that by increasing the threshold the accidental coincidence rate fell. The
following table displays the relationship between threshold, efficiency (from equation 3.4)
and accidental coincidence rates (from previous section).
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Threshold ε (10)2 max % accidental coincidences
1 0.9999080 30%
2 0.9990014 7%
3 0.9944689 6%

From the above table it is seen that the ideal threshold would be threshold 2. This is because
it provides a significantly lower percentage of accidental coincidences when compared to
threshold 1. Also when compared to threshold 3, threshold 2 provides a higher accepted rate
and a comparable percent accidental coincidence rate making threshold 2 the best option.

4.3 Dead time

Dead time for the scanner can be determined from the singles rate for one tube. Since the
rate map is approximately symmetrical the dead time for one tube during a scan would
be near identical to that of the other tube. Using equation 2.4 the dead time in a single
tube can be estimated in a location of highest rate. The maximum is chosen since that is
where the effects of dead time will be greatest. Using the singles rate map in Figure 4.1 the
highest singles rate is found to be 2.5 MHz and taking τdt = 0.02 µs corrected singles rate is
2.63 MHz. This means that the dead time correction represents 5% of the detected singles
rate.

4.4 Comments on scan rate

The scan rate depends on several variables which are explored in this section.

Statistical considerations

In order to obtain statistically significant results for the scanner the speed must be such
that a sufficient number of counts are determined for each location the scanner scans. This
number is effected by the rate and threshold value of the scanner. The higher the rate the
less time required to acquire sufficient counts. Also the lower the threshold the less time
needed to acquire sufficient results, but as seen earlier this lowering of threshold increases
the occurrences of accidental coincidence.
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Variation of rate with respect to position

As the scanner moves through a scan it is essential that the measured rates can be linked
to the location of the scanner. In locations with high variation in rate with position it may
be required to slow the scan down to ensure accurate creation of the rate map. Slopes of
measured rate (Rmeas) vs position in x an y (∂Rmeas/∂x and ∂Rmeas/∂y), locations of rapidly
changing rate can be recognized.

Variability of Q-weak parameters with time

During the run time of the experiment, parameters will shift. For example the beam may
shut off or change location causing a change in the observed scanner coincidence rate. To
ensure confidence in the results of a scan the scan time should be kept under 20 minutes.
This should ensure that the experimental parameters will not have shifted so significantly
that the scan will not be useful.



Chapter 5

Conclusion

The Q-weak experiment, its motivation and the quartz scanner detector for the experiment
were presented. The motivation of the scanner was discussed with a focus on the extrap-
olation of Q2 to production current. A custom simulation of the detector’s operation was
coded and was used to investigate runtime parameters for the scanner. Results suggest that
accidental coincidence rates are strongly dependent upon the beam current and will need to
be accounted for, or if deemed unacceptable, the scanner redesigned to reduce the accidental
coincidence rate. Nonetheless, an acceptable solution to minimize accidental coincidence
rate while maximizing efficiency was found. Further investigations are possible with this
code that will help determine what the correction methodology will be when the scanner is
installed in the experiment.
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