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Abstract

The birdcage-like coil, composed of independent saddle coils bound to the surface

of a cylinder, approximates the infinite cylindrical surface current K sin(nφ)ẑ. Re-

search was geared toward the applicability of the birdcage-like coil as a possible active

magnetic shield for use in measuring the neutron electric dipole moment. This coil pro-

duces a transverse magnetic field with good homogeneity. A prototype coil was built

and field mapped for homogeneity. A computer model of the birdcage-like coil was used

to investigate its properties. A numerical search in parameter space was conducted to

find a set of parameters in order to design a coil with better homogeneity.
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1 Introduction

For certain applications in experimental physics, it is desirable to maintain a magnetic field

in some region of interest that is homogeneous and constant in time. However, the magnetic

field in laboratories is not usually homogeneous nor constant in time. This raises the question,

what can be done to counteract any fluctuations in a magnetic field over space and time?

One method to cancel out fluctuations is to use active magnetic shielding. First, a homo-

geneous magnetic field is generated within a region of interest. Second, this magnetic field

must be manipulated in real-time to counteract any fluctuations due to any outside source.

The magnetic field will then be kept unchanged over space and time in that region. Active

magnetic shielding is named active because of this real-time counteraction to keep the field

constant in time. If the magnetic field can be made homogeneous and it counteracts changes

in time, we have total control over the field in a specified region. Then, any experiment de-

pendant on a precise measurement or manipulation of the magnetic field can be conducted

as desired.

One example of an experiment where a very homogeneous and steady field is necessary

is the measurement of the neutron electric dipole moment (nEDM). The nEDM has not

yet been measured to be non-zero. If the nEDM is non-zero, it would be incredibly weak,

and therefore difficult to detect. A large constraint to the measurement of the nEDM is

the homogeneity and constancy of the magnetic field within the region that the experiment

takes place. If one hopes to measure the nEDM precisely, control over the magnetic field in

a region is necessary.

The Biot-Savart law tells us that a steady current gives rise to a magnetic field B that is

constant in time. Steady currents arranged in the proper way will create a homogeneous field

within a certain region. However, it is not sufficient to be able to produce a homogeneous

field. One also needs to be able to manipulate the current distribution in such a way as to

change the direction of the homogeneous field. One way to manipulate a current distribution

for such a task would be to change the magnitude of different currents that make up the
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distribution. It is also valuable for background gradient fields to be cancelled with this

current structure thereby giving even more homogeneity.

Even once a theoretical current distribution that can generate arbitrary homogeneous and

gradient fields is found, a practical coil design must be created to either generate this current

distribution or approximate it. The purpose of this paper is to investigate the birdcage-like

coil design which approximates an ideal current distribution. The ideal current distribution

itself generates a homogeneous field and gradient fields in arbitrary direction. This particular

coil design may be appropriate for use as an active magnetic shield.

A prototype birdcage-like coil was built and tested for homogeneity. It was also tested

to see whether it could generate a B field in some predicted direction. If the birdcage-like

coil is shown to produce homogeneity in a specified region and it can control field direction,

the coil will have some functionality as an active magnetic shield.

Computer modeling of this coil design and its magnetic field was studied as well. End

current discretization and ideal coil parameters were investigated using modeling for the

purpose of future design ideas. Also, the homogeneity of the birdcage-like coil’s field was

compared to the field of the square Helmholtz coil. This paper will also put forward results

of the computer modeling.

2 Theory

To begin I will discuss a current distribution that gives rise to a uniform field and to gradient

fields. We will look at currents bound to the surface of a cylinder, which make for simple

coil construction and winding. Therefore, I will first discuss cylindrical surface currents.

2.1 The infinitely long ideal surface current

An infinitely long cylindrical surface current of K = K sin(nφ)ẑ will give rise to either a

transverse uniform field for n = 1, or transverse gradient fields for n > 1, in the region within
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the coil. It cannot, however, generate a field pointing along its axial direction. An axial field

must be left up to a separate coil to generate. Here K is constant current-per-unit-length,

and the mode n is a positive integer. Also, (ρ, φ, z) are the usual cylindrical coordinates. To

see that such a current distribution gives rise to uniform and gradient fields, we start with

the vector potential due to this current distribution, derived elsewhere [1, 2]:

A(ρ, φ) =
µ0aK sin(nφ)

2n
ẑ
(ρ
a

)n
, ρ < a . (1)

Here a is the radius of the cylinder.

Taking the curl of A, we obtain an expression for the field B in the region ρ < a:

B(ρ, φ) =
−µ0K

2

(ρ
a

)n−1

[sin(nφ) φ̂− cos(nφ) ρ̂] . (2)

Transforming into cartesian unit vectors we get,

B(ρ, φ) =
−µ0K

2

(ρ
a

)n−1

[− cos ((n− 1)φ) x̂+ sin ((n− 1)φ) ŷ], ρ < a , (3)

where,

ρ =
√
x2 + y2 φ = tan−1(

y

x
)

ρ̂ = cos(φ)x̂+ sin(φ)ŷ φ̂ = − sin(φ)x̂+ cos(φ)ŷ.

In Equation 3, it is easy to see that B describes uniform and gradient fields for n = 1 and

n > 1, respectively. If n = 1 then B = µ0K/2 x̂, which is constant in magnitude and

direction. If n > 1, and we take φ = 0 for simplicity, then B ∝ xn−1 x̂. Therefore, along the

x-axis (φ = 0), B describes a gradient of degree n− 1.

More generally, B goes as ρn−1 in any arbitrary radial direction in the transverse plane.
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From Equation 2,

|B| =

√(
−µ0K

2

(ρ
a

)n−1
)2 [

cos2((n− 1)φ) + sin2((n− 1)φ)
]

=
µ0K

2

(ρ
a

)n−1

⇒ |B| ∝ ρn−1.

This applies for any value of φ. Therefore, |B| is a gradient along any φ = constant curve.

Note that it is equally acceptable to generate transverse uniform and gradient fields for a

cos(nφ)ẑ surface current distribution. I have chosen to work with the sin(nφ)ẑ distribution

for this paper. See Appendix A for the above equations when ρ > a and when K =

K cos(nφ)ẑ.

Figures 1 and 2 show field lines of B in a transverse plane both inside and outside of

the infinitely long cylinder. For each subfigure, field line density is proportional to field

strength. For n = 1, field line density and direction is constant. For n > 1, field line density

is decreasing as ρ increases from 0 to a.

(a) sin(1φ) (b) sin(2φ)

(c) sin(3φ) (d) sin(4φ)

Figure 1: Magnetic field lines for the ideal sin(nφ) current distribution. The dashed line is
the circumference of the infinitely long cylinder.
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(a) cos(1φ) (b) cos(2φ)

(c) cos(3φ) (d) cos(4φ)

Figure 2: Magnetic field lines for the ideal cos(nφ) current distribution. The dashed line is
the circumference of the infinitely long cylinder. Field line density is the same as in Figure 1.
Note that each cos(nφ) field line plot is a rotation of the sin(nφ) field line plot of angle π

2n
.

2.2 The birdcage-like coil and its current configuration

The birdcage-like coil is a design that approximates the ideal sin(nφ) surface current dis-

tribution. The birdcage-like coil does so by running appropriate axial currents at discrete

evenly-spaced values of φ along the cylindrical surface. There are an even number of sad-

dle coils, N , hereupon referred to as segments, that cover the curved surface of a cylinder.

Figure 3 depicts the birdcage-like coil. The way the birdcage-like coil works is that each

segment runs current independently. The current in axial rungs of adjacent segments sum

together to produce the appropriate sin(nφ) distribution. In theory, each segment runs cur-

rent independent of the other segments. However, if two or more segments require the same

current to produce a particular field, they may be run in series or in parallel to reduce the

number of power supplies necessary to generate that magnetic field.
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Φ Ρ

x

y

z

a

{ s

Dj

Figure 3: A model of the birdcage-like coil. It is comprised of eight individual saddle coil
elements, each of length 2` and wound on radius a. The arc length spacing between segments
is given as s, and ∆ϕ is the angle subtended by the sum of s and a single coil segment. The
orientation of cartesian coordinates (x, y, z) and cylindrical coordinates (ρ, φ, z) are shown
in relation to the coil.

For the purpose of conforming with the constructed prototype coil, I have chosen here to

make N = 8. Figure 4 depicts plots of sin(nφ) and cos(nφ) over 2π for n = 1, 2, 3, 4. It also

shows dots spaced at π/4 intervals. This plot represents the birdcage-like approximation for

8 segments. The x-axis represents the circumference of cylindrical distribution. The dots are

the points at which adjacent segments meet and where sin(nφ) and cos(nφ) is approximated

by discrete values. There are N points of discrete sin(nφ) current for an N segment coil. For

sin(1φ), each period of sin is approximated by 8 points. For sin(2φ) and sin(3φ), sin(4φ),

each period of sin is approximated by 4, 8/3, and 2 points, respectively. As n increases, the

number of points available to approximate the sin(nφ) distribution decreases for fixed N .

There is an upper limit of n = N/2 modes for an N segment coil. This can be seen from

the Nyquist sampling theorem [6]: a harmonic function of period W can be determined by

points evenly spaced a distance no more than 1/(2W ). In our case, this theorem implies
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that sin(nφ) can be determined over the range φ = 0 → 2π by no less than N = 2n evenly

spaced points. For N = 8 segments, the highest possible mode that can be approximated is

n = 4, and is visualized in Figure 4d. Any higher modes would be undersampled for such a

coil and this would lead to aliasing.

It is desirable to derive a formula for the current in each segment necessary to produce

some arbitrary transverse uniform field or gradient field, so that the birdcage-like coil can

be put into practice. We start with an expression for the currents flowing axially along a

cylindrical surface at the N discrete points where adjacent segments meet:

Ij =

∫ ϕj+∆ϕ/2

ϕj−∆ϕ/2

K sin(nφ) a dφ = I sin(nϕj) , (4)

where j = 1, 2, ..., N , I = aK 2
n

sin(n π
N

), ∆ϕ = 2π
N

is the angle between axial line currents

as seen in Figure 3, and ϕj = ∆ϕ(j − 1) is the angular position of each successive line

current. This current distribution is proportional to sin(nφ), and it allows us to obtain B

from Equation 2.

Now, consider the direction of B points along the positive x-axis, corresponding to φ = 0. We

can solve Equation 4 and then find the segment currents that give rise to Ij. The procedure

I followed to find segment currents was to start with the largest axial current and assume its

adjacent segments each produce half of that axial current. From there I moved successively

along the segments, assigning them current values that add up to their adjacent axial values.

A more systematic way would be to solve the currents as a system of N equations. The

solution for n = 1 is shown pictorially in Figure 5, where the dots, as in Figure 4, correspond

to the azimuthal location of the wires.
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Figure 4: Plots of sin(nφ) and cos(nφ) for n = 1, 2, 3, 4 along with dots representing positions
of discrete current.
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Figure 5: Individual segment current distribution, along with the sin(1φ) discrete current
distribution, for N = 8. The values along the circumference at angles ϕ1 through ϕ8 are
th currents sin(1ϕj). The end ring currents, J1 through J8, are the same as the segment
currents. Positive current flows clockwise. Note that adjacent axial segment rung currents
sum to give the correct sin(1ϕj) current where the end rings meet. The angle describing the
azimuthal orientation of the field is ϕ = 0 (see Equation 5).

It is a simple procedure to determine segment currents when B points towards ϕj. In

this case, the currents are merely permutations of the current configuration that arises for B

pointing along x̂, which corresponds with ϕ1 (i.e. the current configuration seen in Figure 5).

To obtain an equation for the segment currents that generate arbitrary transverse B, we must

add a linear combination of independent current configurations that give rise to orthogonal B

fields; for example, along x̂ and ŷ. It turns out that independent configurations for arbitrary

mode n generate fields that are oriented at angles φ0 and (φ0 + π
2n

) where φ0 is an arbitrary

angle. This can be visualized with Figures 1 and 2. We know that sin(nφ) and cos(nφ)

are linearly independent of each other. Between sin(nφ) and cos(nφ) in Figures 1 and 2,

magnetic poles are separated by an angle of π
2n

. Therefore, linearly independent current

configurations will be rotations of that same angle π
2n

. I have taken φ0 to be 0 for my

calculations, as is seen in Figure 5.
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Finally, the segment current configurations can be written for n = 1, 2, ..., N
2

. For n = 1

we have,

2aK sin(
π

8
)



(1
2

+ 1√
2
) 1

2

1
2

(1
2

+ 1√
2
)

−1
2

(1
2

+ 1√
2
)

−(1
2

+ 1√
2
) 1

2

−(1
2

+ 1√
2
) −1

2

−1
2

−(1
2

+ 1√
2
)

1
2

−(1
2

+ 1√
2
)

(1
2

+ 1√
2
) −1

2



cos(ϕ)

sin(ϕ)

 =



J1

J2

J3

J4

J5

J6

J7

J8



. (5)

For n = 2,

aK sin(
π

4
)



1
2

1
2

−1
2

1
2

−1
2
−1

2

1
2
−1

2

1
2

1
2

−1
2

1
2

−1
2
−1

2

1
2
−1

2



cos(2ϕ)

sin(2ϕ)

 =



J1

J2

J3

J4

J5

J6

J7

J8



. (6)
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For n = 3,

2

3
aK sin(3

π

8
)



( 1√
2
− 1

2
) 1

2

−1
2

−( 1√
2
− 1

2
)

1
2

−( 1√
2
− 1

2
)

−( 1√
2
− 1

2
) 1

2

−( 1√
2
− 1

2
) −1

2

1
2

( 1√
2
− 1

2
)

−1
2

( 1√
2
− 1

2
)

( 1√
2
− 1

2
) −1

2



cos(3ϕ)

sin(3ϕ)

 =



J1

J2

J3

J4

J5

J6

J7

J8



. (7)

For n = 4,

1

2
aK sin(

π

2
)



1
2

1
2

1
2
−1

2

1
2

1
2

1
2
−1

2

1
2

1
2

1
2
−1

2

1
2

1
2

1
2
−1

2



cos(4ϕ)

sin(4ϕ)

 =



J1

J2

J3

J4

J5

J6

J7

J8



. (8)

In all the above I have chosen N = 8. The segment currents are labeled J1 through J8. Note

that ϕ is the angle describing the azimuthal orientation of B within the coil. I have taken

the orientation of the fields for sin(nφ) (Figure 1) to be ϕ = 0. For the n = 1 mode, ϕ

describes the direction of B. Using Equations 5 to 8, uniform and gradient fields up to mode

n = 4 can be generated in some arbitrary transverse orientation.
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2.3 Contour plots of the birdcage-like model magnetic field

A computer model of the birdcage-like coil was created for the purpose of investigating its

properties. Using the computer model of the birdcage-like coil (see Appendix B) and its

generated magnetic field, contour plots of said field were created. The idea is to compare the

magnetic field due to the birdcage-like coil as it is split up into various number of segments.

See Figure 6 for the contour plots and their orientation in the z = 0 plane. Segment currents

flow so that the generated field points along the positive horizontal direction, x̂.

The value plotted is the percent difference of the field compared to the isocenter1 which

is at the center of each plot. Only Bx is plotted. Especially with these plots being of ideal

computer models, the other two components of B are negligible in the central region near

the isocenter.

Contours go negative as they become darker shades of purple, and they go positive as they

become lighter shades towards yellow. This corresponds to darker contours being smaller

than the isocenter field, while lighter contours being larger than the isocenter field.

As expected, homogeneity within the coil increases withN . The spacing between contours

changes markedly from 10% to 0.1% to 100 ppm for N = 4, 12, 32, respectively. This is due

to the ideal sin(nφ) surface current distribution being more closely approximated for greater

N . The magnetic field approaches perfect homogeneity as N grows.

Because of the way the segment currents sum together when N = 4, Figure 6a approxi-

mates two line currents flowing out of the page at position (0,1) and into the page at (0,-1).

The field grows traveling in the direction of (0,1) or (0,-1) and falls off traveling away from

those points. In Figure 6b, the segment rungs approximate 10 line currents flowing either

in or out of the page on the cylindrical surface. With more line currents approximating

the appropriate surface current, the homogeneity covers a more circular region within the

coil in the z = 0 plane. Finally, in Figure 6c there are 30 approximated line currents on

1The isocenter is the origin of the coordinate system in Figure 3, the point at the axial and radial centre
of the coil.
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the cylindrical surface. The homogeneity is now more evenly distributed. Contour lines are

smoother within the coil.

3 Prototype design and characterization

Herein I will discuss notable features of the birdcage-like coil, the construction and specifi-

cations of the built prototype coil, and the methods used in testing the built prototype coil.

The prototype coil was characterized by measuring its self-resonance, inductance, resistance,

and homogeneity.

3.1 Features of the birdcage-like coil

There are several notable features of the birdcage-like coil that are especially convenient for

construction and operation.

1. This design is simply a collection of saddle coils, making it is an easy design to build

on the surface of a cylinder. Wire is wound so that it either follows an axial path,

or an angular path. This makes for simple construction. It also can be a very sturdy

design with the cylindrical shell holding the coil rigidly in place. It is possible that an

appropriate cylindrical shell can be bought off the shelf.

2. It is convenient to have uniform and gradient fields up to the N/2 mode produced by

the same coils. Certain other uniform field coil designs do not produce gradient fields.

3. In Equation 5, we see that certain rows of the matrix are linearly dependent. For J1

to J4, Ji = −Ji+4. This means that opposing segments (Ji and Ji+4) can be connected

in series. This allows for N/2 = 4 power supplies to control the field of the n = 1

mode. From Equations 6 to 8 we see that for n = 2, opposing segments run the same

current which means they can be connected in series opposition. This also allows for

four power supplies to be used. For n = 3, opposing segments run negative currents of

13
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(a) N = 4. 10% contour spacing.
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(b) N = 12. 0.1% contour spacing.
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Figure 6: Contour plots of Bx for varying N (4, 12, and 32) in the n = 1 mode. Plotted over
0.6·radius of the coil (the radius a is 1 m). End segments of the model coil are approximated
by five discrete chunks. Length is 4·radius. Contour spacing decreases as N increases. The
contour plot for 12 segments situated within the model coil it corresponds with (bottom
right). Note that the proportions of this coil are to scale.
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each other, can be connected in series opposition, so they can operate with four power

supplies. For n = 4, every second segment runs the same current, can be connected

in series opposition, so they can operate with two power supplies. However, if one

would like to transition from one mode to another on the fly, all segments must run

independently. This is due to the fact that opposing segments must run the same

current in one mode, but negative current in another.

3.2 Prototype construction

In order to investigate the birdcage-like coil for its homogeneity and as a possible active

magnetic shield, a prototype was constructed for testing. The number of segments for the

coil was chosen to be eight. This decision was primarily out of concern for the number of

power supplies necessary to run segment currents.

Figure 7: The birdcage-like prototype coil constructed for testing, along with the four output
power supply connected to the coil. N = 8. Opposing segments are soldered together in
series.

The coil was built on a hollow cylindrical water pipe made out of some unknown type

15



of plastic. The plan for construction was to wrap wire on the outside surface to form

each segment. Four screws were drilled into the outer surface of the pipe for each segment

as posts on which the wire would be wound. It did not matter whether the screws were

electrically conductive because there was no way for them to make a short circuit with

anything. However, sturdy screws are desirable because a number of them broke while being

drilled into the plastic. See Figure 7 for the built prototype coil connected to a multi-output

power supply.

Specification of the prototype coil are given in Table 1:

Table 1: Properties and specifications of the prototype coil itself

Specification Value
Length (53.6± 0.3) (cm)
Radius (56.0± 0.1) (cm)
Segment spacing (5.5± 0.2) (mm)
Wire used per segment 25 turns of 26 gauge copper wire
Isocenter magnetic field produced (75.6± 0.8) µT2

Assuming N = 8, the n = 1 mode allows opposing segments to be connected. For the

prototype coil, opposing segments were connected in series with one of the segments having

its polarity reversed. Hence, four power supplies can be used as opposed to eight.

Opposing segments were connected by a wire that runs along the top of the circumference

of the cylinder in Figure 7 (the tape securing these wires to the circumference is visible).

The two ends of each connected pair segment were brought together by running another wire

along the circumference of the cylinder, on top of the first wire. The field generated by these

two circumferential wires is negligible because of their proximity and opposing currents.

The power supply used was an Agilent 6624A DC four-output power supply. The outputs

2The field displayed is Bx, which is the dominant field in the central region of the coil. The magnetic
field produced is dependent on the scaling of the current in the coil segments. Consequently, it makes sense
to use a field-per-unit-current of the coil when comparing to Earth’s field. The prototype field produced can
be thought of as field-per-unit-current (µT/A) where the current referenced is the maximum current along
the cylindrical surface of the ideal axial distribution. From Equation 5, I = 2aK sin(π/8) was set to one.
So, the field produced is the isocenter field for (1 · sin(φ))A axial current.
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were restricted to 0 to 20 V, and 0 to 2 A.

The total magnitude of Earth’s field was roughly 44 µT in the region of the prototype

while testing occurred. The prototype produced a magnetic field-per-Ampere2 greater than

Earth’s field. This is nice because a field large enough to cancel out Earth’s field is generated

at relatively low current, and consequently low power dissipation. There were no problems

with heat dissipation in the coil while testing.

3.3 Methods

What follows are the methods used in characterizing the constructed prototype coil. Self-

resonance, inductance, resistance, and homogeneity were measured.

3.3.1 Self-resonance measurement

The birdcage segments have inherent inductance and self-capacitance, which means that

they are RLC circuits when running AC current and will self-resonate at certain frequencies.

The RLC circuit impedance is given as,

Z =
√
R2 + (χL − χC)2 , (9)

where χL = ωL and χC = 1
ωC

. When the frequency of the coil is greater than resonance, χL

dominates and the coil acts more as a capacitor. The magnetic field produced by the coil

above resonance will not behave as expected. It is therefore important to operate the coil at

frequencies safely below any coil self-resonance so that the generated field behaves properly.

It is also valuable to measure the self-resonant frequencies of the birdcage-like coil because

the coil will not behave as desired at resonance. Currents in the coil will rise at resonance,

and because precise currents must be maintain in each coil segment, the magnetic field

generated will change and homogeneity will be poorer.

For this measurement, opposing segments had been severed, so self-resonance was mea-

17



sured for a single coil segment. Also, coil segments were kept as an open circuit. With the

prototype oriented so that its axis pointed vertically, a transmit coil was placed centered

just under a segment. A receive coil was placed just above the same segment, on an axis

perpendicular to that of the transmit coil. The transmit coil was connected to a function

generator producing a sine wave. The receive coil was connected to an oscilloscope with its

signal displayed. The frequency of the function generator’s sine wave was swept through 1

kHz up to 10 MHz. Any spike in the magnitude of the receive loop’s signal was viewed on

the oscilloscope and was recorded as a self-resonance. See Figure 8 for the circuit diagram

of the coils set up in order to find self-resonances.

Figure 8: The circuit diagram of the apparatus for the self-resonance measurement, along
with magnetic field lines due to the driven transmit coil. The transmit coil is driven in order
to produce a magnetic field that couples with the birdcage segment. The birdcage segment
then couples with the receive coil, and its signal is measured. The loops represent magnetic
field lines. The smaller field line loops are coupled. Note that when the transmit and receive
coils are perpendicular to each other, shared magnetic flux is smaller (represented by the
large magnetic loop not passing through the core of receive coil inductor).

The two transmit and receive coils were later brought near each other with nothing else

nearby to couple with. The same procedure of sweeping through the function generator’s

frequency was performed to check whether any of the measured self-resonant frequencies

were due to either of the transmit/receive coils themselves.

3.3.2 Resistance and inductance measurements

Resistance and inductance were measured by a four-point measurement using a lock-in am-

plifier. The resistance and inductance are valuable to determine because these quantities are
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due to geometry/conductor material and they define a coil. They also serve as a check of

a coil’s continuity. The resistance and inductance of a coil are dependent on the number of

turns of wire and so they can be used to verify the number of turns in a coil.

Opposing segments were connected for this measurement, and values were recorded for

each of the four opposing segment pairs. See Figure 9 for the circuit diagram of the setup

for this measurement.

Figure 9: The circuit diagram of the setup for the resistance and inductance measurement

Here V0 = 1.000 is the applied RMS voltage of the lock-in amplifier, the 50 Ω resistance

is internal to the lock-in amplifier, Z is the measured value of the segment pair defined in

Equation 10, and A and B are where the lock-in amplifier measures the voltage drop of the

coil segment. The segment pair was connected to the ’sine out’ of the lock-in amplifier with

a 10 kΩ resistor between them. The equation for Z is as follows,

Z = R + ı ωL =
X

I
+ ı

Y

I
. (10)

Here R, and L are coil resistance and inductance, ω is frequency, I is current, and X and Y

are the Channel 1 and Channel 2 RMS voltage outputs. The phase of the lock-in amplifier

was 0.00 degrees, and frequency f = 1599.5 = 10050/(2π) Hz. The value of 10050 was

roughly the resistance of the added resistor and internal lock-in amplifier resistance. The

measured value of this added resistance was Rdrop = 10180 Ω. The lock-in amplifier measures

voltage directly, but we want R and L. After manipulation, we end up with equations for R
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and L;

R =
X

V0/Rdrop

,

L =
Y

V0 · 2π · f/Rdrop

.

The resistance due to the two wires connecting opposing segments was subtracted from the

resistance data. The measured uncertainty was taken to be the error due to fluctuations in

the lock-in amplifier output.

3.3.3 Field mapping along the x- and y-axes

A simple field mapping test was performed within the coil along the x- and y-axes in the

z = 0 plane (axial central plane). The coil was oriented so that the axial direction was

vertical. Equation 5 was used to generate a homogeneous field for ϕ = 0 (along positive

x-axis). The coil was placed as far as possible from any magnets and from its power supply.

A three-axis fluxgate magnetometer was used for measuring the field. The fluxgate was

mounted on a ruler such that its internal sensors would lie as close as possible to the z = 0

plane (the three sensors are separated a small distance from each other in the z-direction)

when the ruler was held vertically and rested on the surface the coil was placed on. All that

was left to do was translate the fluxgate along each axis and record data at regular intervals.

However, the most crucial part of measurement was to assure that the orientation of the

fluxgate remained constant while translating along an axis.

To keep the fluxgate orientation constant, two feet were attached to the bottom of the

ruler to keep the orientation fixed in one direction. To measure position along the axis and

help fix orientation, a ruler was attached on top of the coil along the axis of measurement (but

offset just enough so that the vertical ruler holding the fluxgate could rest on the horizontal

ruler and lie both vertically and perpendicular to the axis of measurement). Lastly, two

lines were drawn on the surface the coil rested on, along the x- and y-axes. The bottom of

the ruler holding the fluxgate was kept aligned with the line drawn along the axis, again to
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ensure the orientation of the ruler remained fixed. Figure 10 depicts the apparatus inside

the coil for measurement.

Figure 10: The apparatus used for measuring the magnetic field along the two transverse
axes. The red object is the fluxgate which is attached to the ruler oriented vertically.

The field was measured in 1 cm increments from one extreme inside the coil to the other.

Each measurement was made twice; once with the coil current on and once with the coil

current off. This was done to be able to cancel out Earth’s background field. To calculate

the uncertainty in the measurement, blind measurements of the field were made five times at

two different points along an axis. The fluxgate was positioned at a point along the axis and

the field was recorded by another person to eliminate bias in measurement. The fluxgate

was removed from its position and then brought back to make the field measurement again.

The standard error of these measurements was used as the error. The error was multiplied

by two as every point was measured with the coil current both on and off.

4 Results

Results of both the prototype tests, and coil/magnetic field modeling are presented in this

section.
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4.1 Prototype self-resonance, resistance, and inductance

The self-resonant frequencies of the prototype coil are given in Table 2. The self-resonant

frequencies of the prototype coil are relatively high. Certain forms of interference, such as

lighting and AC power at 60 Hz, will not cause any degree of self-resonance in the coil.

Table 2: The self-resonant frequencies of a single prototype segment. We observed five
resonances up to 10 MHz

Self-resonance
(470± 10) kHz
(630± 10) kHz
(690± 10) kHz
(780± 10) kHz
(1060± 10) kHz

The resistance and inductance of opposing pairs of saddle segments are given in Table 3.

The percent difference between the highest value of segment resistance and lowest value of

segment resistance is 0.6%. As resistance was measured for opposing segment pairs connected

together, the resistance of 50 turns of wire were measured at a time. If the windings were off

anywhere by one turn, say, a difference of roughly 2% would be expected. A 0.6% difference

suggests the winding was done correctly. The measured discrepancy is likely due to segments

having slight differences in geometry and differences in winding tension.

Table 3: The four opposing segment pairs were measured for resistance and inductance.
Values presented here are the average of each opposing pair. The opposing pairs were
connected in series for measurement.

Pair Resistance (Ω) Inductance (mH)
1 (5.10± 0.01) (1.509± 0.002)
2 (5.09± 0.01) (1.559± 0.002)
3 (5.07± 0.01) (1.529± 0.002)
4 (5.07± 0.01) (1.530± 0.002)
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4.2 Field mapping

The n = 1 field generated by the prototype coil was measured along the x- and y-axes

(Figure 3) within the coil. Appropriate currents were applied to the segments so that the

direction of the expected field would be in the x̂ direction. Data was recorded at 1 cm inter-

vals to compose a very simple field map. This data was then compared to the computational

model (Figure 11). The computational model treats all 25 turns of wire that comprise a coil

segment as one line current.

The plots are normalized with respect to the field at the isocenter. Only the on-axis (x-

axis) directional field is shown. The other transverse directional field and the axial directional

field are negligible near the coil center along both the x- and y-axes.

The data points are offset to the right relative to the isocenter in both plots of Figure 11.

In other words, there are more data points along the model curve to the right of the isocenter

than to the left of the isocenter. This is due to the way the apparatus was set up in making

measurements. The fluxgate sensor used to measure the magnetic field was attached to one

side of a ruler. The point of reference used to determine position along an axis was the edge

of the ruler where the fluxgate was secured. The sensor within the fluxgate enclosure was

offset to the right from that point of reference (Figure 10 shows the fluxgate secured to the

side of the ruler where the point of reference is located). Hence, all the data is shifted to the

right of center.

Data fitting was performed to determine the isocenter according to the data set. This

was done because the isocenter was not measured independently. It was necessary to find

an isocenter of the data set so that the data could be matched up against the computer

model along the horizontal axis. The modeled field is ideal so its isocenter is known exactly.

Therefore, the Chi-squared test was used to compare the data against the computer model

as the data was shifted horizontally against the model. About 93% of the data points are

within error of the model magnetic field. The isocenter of the data fits well with the isocenter

of the model to get this agreement.
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Figure 11: Comparing the n = 1 measured prototype field to the numerical model field:
along y-axis (above), along x-axis (below). The continuous curve is the field of the numerical
model. The center of the horizontal axis is the coil’s isocenter. The coil radius is 0.28 m
along the horizontal axis. The isocenter field Bx,centre was taken to be the smallest value of
each data set.

The curve of Bx along the y-axis in Figure 11 is increasing. At ±a along this axis there are

two rungs of current normalized to ±1 (positive and negative directions, respectively). By

the right-handed rule, the field due to these two rungs points in the direction of the expected

field, x̂. From Equation 17, the field due to one of these rungs goes as 1/r2. Consequently,
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the field increases as we approach ±a. In a similar way, the curve of Bx along the x-axis

in Figure 11 is decreasing after it reaches a local maximum. There are two rungs of zero

current at ±a on this axis. The magnetic field will ultimately decrease as we approach these

two rungs and move away from the ±1 current rungs.

The magnetic field numerical model of the birdcage-like coil is dependent on three pa-

rameters (aside from magnitude, which can be ignored if the field is normalized). These

parameters can be seen in Figure 3 as s, a, and `. They are the arc length between segments

s; radius a; and half-length `. Slight variations in any of these three parameters causes a

distortion to the model curves seen in Figure 11. There was some data fitting involved in

matching the measured parameters to the model. The parameters s, a, and ` were measured

at numerous places on the prototype to obtain a maximum and minimum value for each.

The model was then computed while incrementing each parameter within the measured

range from minimum to maximum. Values for the parameters were chosen that fit best the

experimental data. These values are given in Table 4.

Table 4: The measured range of values for the parameters seen in Figure 3 and Figure 12, as
well as the values chosen to fit the modeled magnetic field to experimental data in Figure 11.

Parameters
s (mm) a (cm) ` (cm)

Minimum measured value 5.2 27.35 26.70
Maximum measured value 5.8 28.60 27.00
Mean of measured values 5.5 27.98 26.81

Chosen value 1.0 28.00 26.85

The segment spacing parameter s was difficult to measure. When the prototype coil

was constructed, segments were progressively wound tighter and tighter as the technique for

winding was improved. A looser winding leads to wires of adjacent segments approaching

each other while a tighter winding keeps adjacent wires apart. This resulted in the segment

spacing parameter increasing slightly as successive segments were wounds (Figure 12). The

space between segments at their lengthwise end (the top of Figure 12) was (5.5± 0.2) mm.
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However, for most of the length of the segments, s varied from virtually 0 to 2 mm. Note that

if the practical minimum and maximum of s is taken to be 0 and 2, the chosen parameter

values in Table 4 are very close to the average of the minimum and maximum.

Figure 12: A close up view of adjacent segments of the prototype coil and the segment
spacing s. Adjacent segments with segment spacing of nearly zero in the middle region
(left), and a different set of adjacent segments with a larger segment spacing in the middle
region (right). The recorded value of s = (5.5 ± 0.2) mm in Table 1 was measured at the
top in this figure where the wire wraps around the screws. However, for the majority of the
axial length of adjacent segments, the middle region, s varies from 0 to 2 mm.

The four power supplies that provided currents in generating the n = 1 field were limited

in their precision. Two of the supplies provided up to three decimal places of precision. The

other two supplies provided two decimal places precision while the currents to be generated

by the supplies were on the order of 1 A. The current generated by the power supplies was

not always the same as the inputted values which lead to a percent error between the actual

current generated and the ideal currents desired. This percent error varied from 0.2% to 2%.

Table 5 gives results for the homogeneity of the prototype magnetic field along the x-

and y-axes for different fractions of radius. Only the on-axis field is considered. The data

points are selected values from both sides of the isocenter seen in Figure 11.
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Table 5: Percent difference of the prototype field compared to the isocenter along the two
transverse axes. Here x̂ is the on-axis field direction while ±ŷ is perpendicular to the field.

Fraction of Radius x-axis y-axis
0.05± 0.01 (0.05± 0.02)% (0.2± 0.1)%
0.20± 0.02 (1.6± 0.2)% (0.7± 0.1)%
0.34± 0.01 (3.4± 0.2)% (1.7± 0.1)%
0.59± 0.01 (5.84± 0.05)% (10± 1)%

4.3 End current discretization

It is possible to approximate the sin(nφ) current distribution with a birdcage-like coil that

has straight line end currents as opposed to end currents that are circular arcs along the

edge of a cylindrical surface. Such a coil is visualized in Figure 13. There may be certain

benefits in using this design to create a homogeneous field. Because the segments in this

design are flat, one benefit is that construction of this coil could be a simpler task. Also,

it may be easier to build the coil modularly so that each segment is constructed separate

from the others. A modularly designed coil could be disassembled for the sake of easier

transportation.

x

y

z

Figure 13: The birdcage-like coil with straight end currents as opposed to curved end cur-
rents. N = 8.

However, the straight end current coil is an approximation of the birdcage-like coil, as it

discretizes the circular arc of an end segment into a single straight line chunk. The birdcage-

like coil is itself an approximation of the ideal axial current distribution. Consequently, the
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straight end current coil may be less homogeneous than the birdcage-like coil. A comparison

was made between the curved end segment coil and a coil in which the end segments were

discretized into a variable number of straight chunks. See Figure 14 below.
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Figure 14: The horizontal axis represents the number of discrete chunks each coil end segment
is split up into. The vertical axis is the normalized field. The Bx and By components of the
field at the point (a, ∆ϕ/2, 0) are also shown. This extra point on the surface of the cylinder
defined by the coil was investigated to check the behaviour of the straight end segment coil
outside of the central homogeneous region. N = 8 in this plot.

In Figure 14, two points within the coil are used for comparison; the isocenter and the

point in the center of one of the segments with cylindrical coordinates (a, ∆ϕ/2, 0). The

coil currents were set up so that the expected field pointed along x̂. Hence, the field at the

isocenter only has a non-negligible Bx. Because the straight end current coil and the curved

end current coil only produce an approximation of a B = Bx̂ field, non-negligible off-axis

components of the field arise as we travel towards the surface ρ = a. A point on the surface

ρ = a will have a non-negligible By. For the z = 0 plane, Bz is still negligible. Therefore,

Figure 14 has one curve for the Bx at the isocenter, and two curves for the Bx and By at

the point (a, ∆ϕ/2, 0).
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Each curve in the figure is normalized with respect to B due to the curved end segment

coil, at its particular point within the coil. The coil with a single straight current connecting

the two segment rungs, represented by x = 1 on the plot, is not actually depicted in the

figure. The normalized field for one end current chunk coil is 1.00454 at the isocenter.

We see that B converges to the curved end segment value as the number of end segment

chunks increases. Not only do the calculations of the field converge, but they converges

rather quickly. When the end segments are discretized into ten chunks, the agreement of

both points within the coil is smaller than 100 ppm. This is significant because it means

that the birdcage-like coil can safely be modeled by a coil with discretized end currents. For

the field modeling I have done, I was safe to split end segments into ten chunks or possibly

even less. Computation time is increased when modeling curves by many chunks, but this

extra computation is unnecessary in our case.

The curved end segment coil used for this comparison is actually a discretized end segment

coil with each segment made up of 100 straight chunks. A circular arc of angle ∆ϕ = π/4 split

up into 100 straight chunks is a close approximation to the circular arc. For our purposes,

the difference between the field produced by these two coils is negligible. I used a 100 chunk

end segment coil for normalization as opposed to a curved current coil because my code was

designed for straight line currents exclusively (Appendix B).

We can deduce that as N increases, the field generated by the straight end segment coil

approaches the field generated by the curved end segment coil. As N increases, the arc

length per segment ∆ϕ decreases. The angle subtended by ∆ϕ will decrease proportionally.

The length of the straight line connecting a circular arc approaches the length of the arc as

the angle subtended by the arc decreases. In other words, arc length is given by L = rθ. The

line connecting the arc has length d =
√

sin2(θ) + (1− cos2(θ)); as θ → 0, d → L. Hence,

the field due to a straight end segment coil approaches that of a curved end segment coil as

∆ϕ decreases and N increases.
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4.4 Searching for optimum parameters

There are two parameters that determine the relative geometry of the birdcage-like coil.

They are shown in Figure 3: the arc length between segments s: and aspect ratio of the coil

`/a. In Section 4.2, values for the three parameters s, a, and ` were sought. Experimen-

tally, each of those three parameters were independent of each other and it was desirable to

determine their values independently. In searching for optimum parameters, there are only

two relevant parameters because our concern is homogeneity, which is only dependent on

relative geometry. Length and radius are combined to give a dimensionless quantity. Scaling

the field’s magnitude has no bearing on its homogeneity.

The parameters s and `/a for the prototype coil were somewhat arbitrarily chosen. Ease

of construction with the materials at hand was the sole influence in determining the param-

eters. However, these two parameters are important factors in how homogeneous the model

birdcage-like coil will be. Consequently, it is a good idea to search for optimum parameters

for a more homogeneous coil design.

One method of parameter searching is to select individual values of s and `/a for homo-

geneity comparison. The idea is to increment the parameters each over their own respective

range. At each fixed value of s and `/a, the field is calculated at many points in some region

of interest inside the coil. A fit function is used to produce a marker of homogeneity for

comparison. This is done over each parameter’s range in two-dimensional parameter space.

One point in parameter space will have the best homogeneity, giving an estimate of optimum

parameters.

A basic investigation in parameter space for optimum parameters was performed. See

Figure 15 below.
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Figure 15: Data points of χ which is an RMS variance in the field, in parameter space. A
21x21 grid of values (top) and a close up of the local minimum (bottom). Smaller values of
χ mean better homogeneity.

The parameter s was incremented in steps of 2 cm from 0 to 40 cm. The parameter `/a

was incremented in steps of 0.1 from 1 to 3. These values make up a grid in parameter space

of 21 · 21 = 441 data points. In this case, s was not dimensionless; segment spacing was

relative to a radius of 1 m.

Coil currents were set up to flow so that the expected field would be in the x̂ direction.

The field was calculated at 1000 points within a spherical region of interest of r = 0.1 · a.

Each cylindrical coordinate was incremented by 10 equally spaced values so that 1000 points
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within the volume enclosed by r were tested. A root-mean-square variance in the field χ was

then calculated for the 1000 points, comparing them to the isocenter value. This results in

a single value for fixed s and `/a, which is a number assigned to a point in parameter space.

A smaller χ value corresponds with better homogeneity. Figure 15 consists of these χ values

in parameter space. The equation for χ is as follows,

χ =
1

Bx,isocenter

√∑N
i (Bx,isocenter −Bx,i)2

N
, (11)

where Bx,i is the x-component of the field at some field point, N = 1000 is the number of

field points used, and Bx,isocenter is the x-component of the field at the isocenter.

The local minimum of χ = 5.45 ·10−7 seen in the bottom plot of Figure 15 has parameter

values of s = 20 cm, `/a = 2. However, I must stress that this position in parameter space

is merely a local minimum. Although it is possible I found the region where the global

minimum resides, I have only searched through part of the useful parameter space. The

global minimum where the best homogeneity is to be found could be elsewhere. Even within

the range of values I tested, I could still zoom in to a smaller region containing what I found

to be a local minimum. I could then test homogeneity again while incrementing parameters

more finely to obtain a more precise local minimum. Nonetheless, the local minimum I found

is surely better than arbitrarily choosing parameter values as was done for the prototype

coil.

4.5 Comparing the birdcage-like coil to the square Helmholtz coil

A square Helmholtz coil is a coil composed of two square loops oriented in the same plane

with side length d and separated from each other a distance of 0.5445 · d. If currents are

applied in the same direction in both loops, this coil produces a homogeneous field in the

direction pointing from the centre of one loop to the centre of the other loop, in the central

region between the two loops. The field generated by the birdcage-like coil was compared to
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the field generated by the square Helmholtz coil. Contour plots of both fields are shown in

Figure 16.

Figure 16: Contour plots of percent difference of Bx in the z = 0 plane, shown from above.
The field generated by the orange square Helmholtz coil (left), and the n = 1 field generated
by the green birdcage-like coil (right). The contours moving out from the isocenter are
±(0.001%, 0.01%, 0.1%, 1%). The parameters of the square Helmholtz coil are: side length
d, and loop spacing of 0.5445 ·d. The parameters of the birdcage-like coil are: a = 0.5445 ·d,
`/a = 2, s = 1◦, and N = 8. With an aspect ratio for the birdcage-like coil of `/a = 2, its
axial length is 4 · a = 1.089 · d.

Coil currents flow in both coils so that the dominant field is Bx, and only Bx is plotted.

The contours are of percent difference compared to the isocenter field. Moving out radially

from the isocenter the contours are either 0.001%, 0.01%, 0.1%, 1% or -0.001%, -0.01%,

-0.1%, -1%. The contours alternate azimuthally from positive percent difference to negative

percent difference.

It is difficult to compare the field of these two coils directly using some parameter that is

fair for comparison. For my comparison, I have chosen to equate the square Helmholtz loop

spacing to the birdcage-like cylindrical diameter. These were the parameters that were fixed
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in order to compare the generated fields. Some other value can be equated for the sake of

comparison, for example, the volume enclosed by each coil.

The square Helmholtz coil provides better homogeneity than the birdcage-like coil in the

z = 0 plane in this comparison. The central area within by the ±0.001% contours is similar

for both coils. However, for higher percent differences, the contours of the square Helmholtz

field are a larger distance from the isocenter than the same contours of the birdcage-like

field. Hence, we see in Figure 16 that the area within the ±1% contours of the square

Helmholtz field is significantly larger than the area within ±1% contours of the birdcage-like

field. Certain parameters of the birdcage-like coil can be varied to increase its homogeneity

relative to the square Helmholtz coil. These include the number of segments N and the fixed

parameter used for the purpose comparison.

5 Discussion

In Section 2.3, it was shown that orders of magnitude improvement of homogeneity can be

achieved by increasing N . On the other hand, there is a significant trade-off when increasing

N for this achievement in homogeneity. First, there are more discrete values to approximate

sin(nφ) by, which increases the current necessary to run the coil. Not only that, but as

N increases there are more adjacent rungs running currents that largely cancel each other

out. So, there is more current needed, but also more wasted current needed to increase N .

Of course, the electric power will increase as well. Second, the number of power supplies

necessary to run all segments increases with N . Third, construction of a birdcage-like coil

as N increases will be more challenging and expensive. There are more segments to wind

and consequently more wire is needed for the coil. With more coil segments to situate and

wind, it is more likely for winding errors and segment positioning errors to build up.

The field mapping discussed in Section 4.2 shows that the homogeneity of the prototype

coil is good (Table 5). The uniformity of the prototype field is impressive for the simple
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construction method used in building the coil. With more professional and precise techniques

of construction, a birdcage-like coil producing better uniformity is entirely feasible.

Also, the values of the parameters s and ` determined through data fitting in Section 4

are very close to the mean of the measured values of those same parameters. The segment

spacing parameter does not match up closely with its data fitted value. Although, it does

match closely if the effective segment spacing is taken to be somewhere between 0 and 2

mm. This problem is due to the construction of the prototype coil (Figure 12) and can be

addressed by either improving the winding technique and increasing tension in the wire, or

by modifying the coil design. The coil design could be modified so that the path the wire

follows would be more restricted, for example, a channel could be milled in the cylindrical

pipe for the wire to be wound in. The closeness of the independent parameter measurements

to their value obtained through field mapping suggests that these parameters can be reliably

measured by field mapping and subsequent data fitting. The combination of careful field

mapping and data fitting was a powerful tool for verifying the coil’s properties.

From Section 4.4, the parameters s = 20 cm and `/a = 2 for a = 1 m gave the best

homogeneity out of the 441 points in parameters space tested. If s = 20 cm, s spans an angle

of roughly 11.5◦, which is surprising. Better homogeneity near θ = s/a = 0◦ was expected

because that is the exact φ position where current rungs are meant to approximate sin(nφ).

Adjacent rungs of current better approximate the discrete sin(nφ) values as they approach

each other. It is possible that an ideal segment spacing of roughly 11.5◦ approximates the

current distribution of the birdcage-like coil with N ·2 = 16 segments which leads to improved

homogeneity.

Similarly, `/a = 2 was surprising as a minimum for homogeneity. Greater values of `/a

were expected because the birdcage-like coil is meant to approximate an infinite cylindrical

distribution. However, the ideal infinite cylindrical distribution does not include end seg-

ments that connect current rungs. It is possible that for `/a = 2, end currents are positioned

at a distance from each other such that they cancel each other out more than at other values
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of `/a.

5.1 Future directions

Although some level of field mapping has been done of the n = 1 field, no mapping or testing

has been done for a higher mode field of the prototype. From Equation 5, opposing segments

have negative current of each other. For n = 2 and Equation 6, opposing segments have

the same current. Because opposite segments run in series and have been connected to each

other, some small modifications and soldering would need to be done to reverse the polarity

of opposing segments to run the n = 2 mode of the prototype. With the modifications to run

opposite segments in series opposition, the mode n = 2 field could be mapped and tested.

In Section 4.2, a uniform n = 1 field was generated and mapped within the prototype.

However, the field did not point in the expected direction because Earth’s magnetic field

was added on to the prototype’s field. To deal with this, measurements were made of the

background field with no currents running and this was subtracted from field when currents

were running. In this way, Earth’s field was accounted for when measuring coil homogeneity.

A further step in controlling the field within the prototype would be to measure Earth’s field

and then cancel it out with the coil itself. If a canceling out field is added to the generation of

a uniform field, the effect of Earth’s field would disappear when creating a field in arbitrary

transverse direction.

A further step in controlling the field within the prototype would be to automate the

power supplies at a higher level. Currently, to change the magnitude or direction of the

desired field inside the prototype, segment current values must be manually calculated and

punched in to the power supplies. This makes for a field that changes very slowly when

prompted. Computer software could be used to control and change the current generated by

the power supplies. Also, Equations 5 to 8 could be written into software so that a computer

would do the calculations when changing the field. This would make for a field that could

be changed quickly when desired.
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Finally, working towards higher levels of automation would culminate in an active feed-

back loop for active magnetic shielding. Some magnitude and direction of a uniform field

would be generated. A sensor would then measure any fluctuation in the field. The sensor

would communicate with the computer controlling the coil’s power supply. Segment cur-

rents would then be automatically adjusts to change the field and counteract the measured

fluctuation. At some interval of time later, the sensor would again measure any fluctuation

in the field and the loop would repeat.

6 Conclusion

Numerous properties of the birdcage-like coil were investigated. It is an appropriate and

useful coil design for the purpose of generating a transverse homogeneous field. However,

preliminary results suggest that the square Helmholtz coil design has better homogeneity

within a comparable central region. The birdcage-like coil is also suitable for use as an

active magnetic shield, provided the power supplies controlling it are properly automated.

For an eight segment coil, the equations necessary to produce all four modes of the coil are

given. A prototype birdcage-like coil was built and tested. The prototype’s field was mapped

along its transverse axes and its homogeneity agrees within error to the field generated by a

computer model.

There is much more that can be done in terms of field mapping both the uniform mode

and higher order gradient modes of the prototype coil. Also, higher degrees of control over

the current running through the prototype coil can yield a rudimentary active magnetic

shield. A carefully built birdcage-like coil may very well be suitable as a transverse active

magnetic shield in a neutron EDM experiment.
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A Supplementary equations for the ideal B field

In general, an infinitely long cylindrical surface current of K = K sin(nφ)ẑ bound to a

surface of radius a produces a vector potential of [2, 1],

A(ρ, φ) =
µ0aK sin(nφ)

2n
ẑ

 (ρ/a)n , ρ < a

(a/ρ)n , ρ > a
. (12)

Taking the curl of A we obtain an expression for the field B,

B(ρ, φ) =
−µ0K

2

 (ρ/a)n−1 [sin(nφ) φ̂− cos(nφ) ρ̂] , ρ < a

(a/ρ)n+1 [− sin(nφ) φ̂− cos(nφ) ρ̂] , ρ > a
. (13)

If the surface current is instead chosen to be K = K cos(nφ)ẑ, the vector potential becomes,

A(ρ, φ) =
µ0aK cos(nφ)

2n
ẑ

 (ρ/a)n , ρ < a

(a/ρ)n , ρ > a
. (14)

The magnetic field due to Equation 14 is,

B(ρ, φ) =
−µ0K

2

 (ρ/a)n−1 [cos(nφ) φ̂+ sin(nφ) ρ̂] , ρ < a

(a/ρ)n+1 [− cos(nφ) φ̂+ sin(nφ) ρ̂] , ρ > a
. (15)

B Biot-Savart law

In magnetostatics, the Biot-Savart law is an equation that describes the magnetic field

generated by a steady current flowing in an arbitrary direction. For a line current the

Biot-Savart law can be written as [3],

B =
µ0

2π
I

∫
dI × r̂
|r|2

, (16)
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where I is the value of the current, dI is a length element along the direction of the current,

and r is a vector from the source current element to a field point. The above integral can

be difficult to solve for a current flowing in an arbitrary direction. An alternative method to

solving such an integral is to treat an arbitrary line current as a collection of discrete straight

line chunks. The discrete current chunks line up end to end along the path of the continuous

arbitrary current as seen in Figure 17. Discrete current chunks will approximate a curved

line current more closely as the number of line segments used to approximate increases.

Figure 17: A continuous function approximated by discrete line segments. The function can
be thought of as some arbitrary line current of which we want to calculate the field.

A special case of Equation 16 is the field due to a finite straight line. Equation 16 can

be rewritten for straight line currents as [4],

B =
µ0

2π
I(ê×Ri)

2L(Ri +Rf )

RiRf

1

(Ri +Rf )2 + L2
. (17)

In the above, Ri is the vector from the tail end of the current segment to some field point (Ri

is its magnitude), and Rf is the distance from the head of the current segment to the field

point. L is the length of the current segment, and ê is the unit vector along the direction the

current is flowing. There is no integral in this case of the Biot-Savart law because there is

no continuous variable to sum over. Instead, B due to an arbitrary current is approximately

the sum of Equation 17 over each individual chunk.

Equation 17 is especially well suited to be written as computer code to be numerically

solved. It involves additon, multiplication, and a cross product. Performing these calcula-
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tions, even for many small current segments, can be a simpler procedure than attempting to

tackle Equation 16 directly.

Mathematica code was written to calculate Equation 17 for any distribution of current

chunks. With the rewritten Biot-Savart law, all that needs to be specified to calculate B is

the magnitude of current, positions of the chunk’s tail end and head, and the position of a

field point. In the code, total B is given by summing the field over each chunk whose input

are these four values.
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