### Qweak: a parity-violation experiment

#### Jeff Martin University of Winnipeg

#### Outline:

- Principle



- U. Winnipeg



#### Mini-Review from Last Class

#### Precise Parity Violation Experiment

- -> Precision Measurement of Weak Force
  - -> Test of Electroweak Theory
    - -> Discovery of New Physics
      - -> Pick up Nobel Prize

(Consolation: if you don't discover a new particle, well at least you found that one does NOT exist, which is also valuable for keeping those theorists in check.)





Parity: reflect all vectors through origin.





Conclusion: regular old e-p scattering is the parity-reversed image of itself.





Parity: reflect all vectors through origin.





Conclusion: helicity reversal is like doing the opposite parity experiment.  $h = \frac{\vec{S} \cdot \vec{p}}{\sqrt{S^2 p^2}}$ 

### "Asymmetry"

We compare the two experiments using:

$$A = \frac{N^+ - N^-}{N^+ + N^-}$$

- Here, N± is the number of counts we got, in a detector, for the ± helicity experiment.
- In fact,
  - we reverse the beam helicity all the time (1/150) s.
  - we usually measure currents instead of counts

### Statistical Uncertainty

Taking the N+ and N- as two different experiments:

$$\delta A = \frac{1}{\sqrt{N^+ + N^-}} = \frac{1}{\sqrt{N}}$$

- Now A = -1e-8 (very small)
- and we want dA = 0.01 |A| = 1e-10
  - We need N = 1e20. I.e. large  $\mathcal{L} = (I/e)*(\rho t/m)$ 
    - (Luminosity = #electrons/s x #protons/cm^2)
    - Rate into  $d\Omega = \mathcal{L} \times d\sigma/d\Omega$ , to get high rate.
  - Any small effect can potentially screw up this experiment (systematic errors)

### Generic Parity Violation Scattering Experiment

detector



electron



target (LH2)

### Generic Parity Violation Scattering Experiment

### Generic Parity Violation Scattering Experiment

## Generic Parity Violation Scattering Experiment





### Generic Parity Violation Scattering Experiment

### Generic Parity Violation Scattering Experiment

# Generic Parity Violation Scattering Experiment

These experiments are the same to 10<sup>-7</sup>

or: how to get screwed in a parity-violation experiment

























must have excellent control of all "helicity-correlated" beam properties (in this case at 1 nm level)







#### Jefferson Lab



Caltech

Coll. of William and Mary

Dartmouth Coll.

George Washington U

Hampton U

**UNAM (Mexico)** 

Idaho State U

Louisiana Tech U

MIT

Mississippi State U

Ohio U

Syracuse U

**TRIUMF** 

Jefferson Lab (TJNAF)

**U** Conn

U Manitoba

U New Hampshire

U Northern British Columbia

**U** Virginia

Virginia Tech

Yerevan Physics Institute

and The University of Winnipeg



### **Qweak Experiment Schematic**



### How the quartz bars work: the Cherenkov Effect + PMT's

- A sonic boom happens when a plane exceeds the speed of sound in air.
- A light boom happens when a particle moves faster than the speed of light in the medium.
- Physicists call this the Čerenkov effect.



### Some (Detector-Related) Systematic Uncertainties

We need to know Q2 because:

$$A_{theory} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W^p + Q^2 \times s\overline{s})$$

We need to know backgrounds because:

$$A_{\text{exp}} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

$$= \frac{(N_{s} + N_{b})^{+} - (N_{s} + N_{b})^{-}}{(N_{s} + N_{b})^{+} + (N_{s} + N_{b})^{-}}$$

$$= \frac{N_{s}^{+} - N_{s}^{-}}{N_{s}^{+} + N_{s}^{-}} \cdot \frac{N_{s}}{N_{s} + N_{b}} + \frac{N_{b}^{+} - N_{b}^{-}}{N_{b}^{+} + N_{b}^{-}} \cdot \frac{N_{b}}{N_{s} + N_{b}}$$

$$= A_{s} \cdot f_{s} + A_{b} \cdot f_{b}$$

### Here's how well we think we can do on them:

#### **Estimated Uncertainties**

|                                     | $\Delta A_z/A_z$ | $\Delta Q_w/Q_w$ |
|-------------------------------------|------------------|------------------|
| Statistical (2200 hours)            | 1.8%             | 2.9%             |
| Systematic:                         |                  |                  |
| Hadronic structure uncertainties    |                  | 1.9%             |
| Beam polarimetry                    | 1.0%             | 1.6%             |
| Absolute Q2 determination           | 0.5%             | 1.1%             |
| Backgrounds                         | 0.5%             | 0.8%             |
| Helicity correlated beam properties | 0.5%             | 0.8%             |
|                                     |                  |                  |
| Total:                              | 2.2%             | 4.1%             |

 Because of the linear relationships before, column #1 is basically how well we're doing on Q2 and backgrounds. Production Mode: Actual asymmetry measurement 180  $\mu A$  electron beam, high detector rate, current mode readout

Calibration Mode: Background and Q<sup>2</sup> determintation

Low current (~ 10 nA), low detector rate, pulsed mode readout





### Determining Q2



R1 and R2 GIVES scattering angle 
$$\theta$$
  
R2 and R3 GIVES momentum pf (approx. Ef) 
$$Q^2 = 4E_i E_f \sin^2(\theta/2)$$

Ei known because the accelerator has magnets!

#### Some examples of backgrounds



Production Mode: Actual asymmetry measurement 180  $\mu A$  electron beam, high detector rate, current mode readout

Calibration Mode: Background and Q<sup>2</sup> determintation

Low current (~ 10 nA), low detector rate, pulsed mode readout

These are
big, slow
detectors
that only
work at low
rate (a few
kHz of electrons
striking the whole
detector)
(caveat: GEM)

4 m



#### A Quartz Scanner for Qweak



#### Concept:

- Scan a small piece of quartz over the surface of the main quartz bars to characterize
   Q2 and backgrounds at both low and high beam current.
- This detector will be able to run at ALL currents, because it is a tiny, fast detector.
- tiny ~ cm^2
- fast ~ speed of light











## Prototyping Tests – Cosmics Testing



## Scanner: open questions

- Well, it's not done, yet. Guess that's a question.
- i.e. we need a light-tube assy and a big robot.
- We need to know where the robot is (laser+photodiode, Laura).
- Supposing we have a scanner, how do we use it most effectively?
  - scan rate? scan pattern?
  - How do we adjust these to minimize the systematic uncertainties?
  - And what is the systematic uncertainty and how do we quantify it?

### Summary

- Parity-violation experiments are hard (helicitycorrelated systematics).
- Qweak is made harder because of several nonparity violating systematics (Q2, backgrounds, polarization).
- Scanner to address Q2 and backgrounds, particularly at high beam current.
- Polarimeter to address polarization.