Diamond Detectors for Accurate Compton Polarimetry

Jeff Martin University of Winnipeg for the Hall C Compton collaboration

U. Conn., Hampton U., JLab, U. Manitoba, MIT, Mississippi St. U., TRIUMF, UNBC, UVa, U. Winnipeg, Yerevan

CIPANP 2009 Torrey Pines, May 2009

<u>Outline</u>

- Motivation
- Design Overview
- Diamond Detectors

Motivation for Compton Polarimetry for Hall C, JLab

- Continuous, noninvasive measurement of polarization
- Complementary to pre-existing Moller Polarimeter (which is periodic, invasive)
- Systematic uncertainty to be similar to Moller (<1%)
 - required for high-precision experiments, e.g. Qweak.

 Measure parity-violating asymmetry in elastic electron scattering to isolate the "weak charge" of the proton.

$$A_{PV} = \frac{-G_F Q^2}{4\sqrt{2}\pi\alpha} \left(Q_{weak}^p + Q^2 B(Q^2) \right)$$

$$A_{meas} = P_e \times A_{PV}$$

$$Q_{weak}^{p} = 1 - 4\sin^{2}\theta_{W}$$

Source	$\Delta A_z/A_z$	$\Delta Q^{p}_{Weak} / Q^{p}_{Weak}$
Statistical	1.8%	2.9%
Hadronic structure	_	1.9%
Beam polarization	1.0%	1.6%
Q ² determination	0.5%	1.1%

4% extraction of $Q_{weak}^{p} \Rightarrow 0.3\%$ determination of $\sin^2 \theta_{W}$

Compton Polarimeter Design Goals

- $(\Delta P/P)_{\text{statistical}} < 1\%$ per hour
 - high laser power
 - high laser energy (green) increases Compton asym.
 - large acceptance for detectors (in energy)
- $(\Delta P/P)_{\text{systematic}} < 1\%$
 - stable beam, small spot in interaction region
 - Iow backgrounds
 - good energy resolution in detectors
 - high laser energy increases Compton edge

Design Goals Cont'd

- Operable for a variety of beam energies from 1.165
 GeV 11.0 GeV
 - chicane
 - must fit in Hall C

Most design studies currently focused on achieving 1% for Qweak experiment: 1.165 GeV @ 180 uA

Compton Polarimetry Principle

• Scatter the electrons from polarized laser light.

Photon Energy relative to Compton edge

$$A_{meas} = P_e P_{\gamma} A_{Compton}$$

Measure:

- Compton asymmetry
- Energy dependence
- Laser polarization

Theory:

• Compton asymmetry

Extract:

• P_e

Hall C Compton Overview

- Chicane
- Laser
- Detectors

Parameter	Symbol	Value
Beam Energy	E _{beam}	1.165 GeV
Laser wavelength	λ	532 nm
Photon Compton edge	k' _{max}	46.4 MeV
Asymmetry @ edge	A _{max}	0.041
Chicane bend angle	$\theta_{_{ m bend}}$	10 deg
Electron free drift	d _{drift}	3.3 m
e- displacement @ edge	X _{max}	23 mm

Chicane

• Chicane in final design stages / out for bid.

Chicane will be reconfigured for 12 GeV upgrade

$E_e \; (\text{GeV})$	θ_{bend}	B (Tesla)	D_{vert} (cm)	$\Delta x_e \ (\mathrm{cm})$
1.165	10	0.67	57	2.4
2.0	10	1.16	57	4.1
2.5	10	1.45	57	5.0
2.5	4.3	0.625	25	2.2
3.0	4.3	0.75	25	2.6
6.0	4.3	1.50	25	4.9
4.0	2.3	0.54	13	1.8
11.0	2.3	1.47	13	4.5

- interplay of chicane parameters with electron displacement at Compton edge
- Photon/electron detectors probably look different at 12 GeV than at 1.165 GeV

Laser

- External green laser, 10 W. (Coherent VERDI)
- Low gain (x 100) cavity in vacuo.
- Electron beam passes directly through the cavity.
- Cavity gains in excess of 100 recently demonstrated by UVa+JLab group

Detectors

Photon Detector options

- 3x3 array of PbWO₄
- Monolithic CsI (undoped)

Electron Detector (what I'll mainly focus on)

diamond strip tracker

Motivation for Electron Detector

- Position resolution gives momentum of scattered electron.
 - Independent single-arm measurement of polarization
 - Calibration of photon detector (coincidence mode)
- Designing for 1%
 Polarization Determination for BOTH

D. Storey, U. Wpg hons thesis

How a diamond detector works

Diamond after cleaning UManitoba NSFL

- Signal limited by impurities and grain boundaries
- Increases with E-field up to ~1-2 V/μ m
- CCD ("charge collection distance")
 ~ 250 µ m

We use pc-CVD (polycrystalline chemical vapour deposition) diamond from Element Six, UK.

Why pc-CVD diamond?

	Silicon	Diamond	
Band Gap (eV)	1.12	5.45	Low leakage current, shot noise
Electron/Hole mobility (cm²/Vs)	1450/500	2200/1600	Fast signal
Saturation velocity (cm/s)	0.8x10 ⁷	2x10 ⁷	Scollection
Breakdown field (V/m)	3x10 ⁵	2.2x10 ⁷	
Dielectric Constant	11.9	5.7	Low capacitance, noise
Displacement energy (eV)	13-20	43	Rad hardness
e-h creation energy (eV)	3.6	13	
Av. e-h pairs per MIP per micron	89	36	Smaller
Charge collection distance (micron)	full	~250	

from Wallny, UCLA

Advantages: lower leakage current, faster, lower noise, rad hard

At the expense of: smaller signal

Radiation Hardness of Diamond Detectors

Signal from Irradiated Diamond Tracker

CERN RD-42: Performance after irradiation with protons

- Little change in S/N after exposure of ~5 Mrad
- 15% change in S/N after exposure of ~50 Mrad
- Si 50% change in S/N after exposure of ~3 Mrad

Estimate for Q-weak alone: 3 Mrad

Prototypes We Fabricated

at OSU (H. Kagan et al)
 in Winnipeg (ourselves)

Achieved: 9000 electrons signal (consistent with typical result from CERN RD-42)

Final Detectors

Metallized diamond on alumina carrier board

Purchased from Diamond Detectors Ltd.

- 96 strips = 48 + 48
- 200 um pitch
- 1 kV applied to opposite side

Test setup for radioactive sources

All diamond now in hand – bench testing with sources

Layout of Diamond Planes

Four planes for
 background rejection,
 track reconstruction
 with high efficiency

Electronics + DAQ

- Custom discrete preamp + discriminator based on previous TRIUMF design (for LiXe project).
- Multiple CAEN V1495's (commercial FPGA plus VME interface) for all trigger + readout.
- Trigger: ³/₄ planes, or track-finding, ...

Q-weak amplifierdiscriminator board

Summary/Timescale for Hall C Compton

- New Compton Polarimeter is under development for JLab Hall C
- unique features compared to Hall A:
 - laser, chicane, electron detector
- Installation in Hall C for Q-weak early 2010.
- Commission May 2010.
- Reconfigure for 12 GeV during long shutdown after Q-weak

Cartoon of Hall C Beamline

Proposed Beamline

Electronics/DAQ

Requirements:

- 4*100 strips for momentum analysis
- trigger: 3 out of 4 planes must fire (efficiency, background reduction)
- < 100 MHz rates expected from Compton Scattering + background</p>
- High Amplification small signal in diamond, ~ $\frac{1}{2}$ silicon
- similar rates for photon det, but need to additionally digitize pulse height
 waveform digitizer?

Readout Electronics

Peiqing Wang made these modifications @ Winnipeg

ADC MP604 Comparator

Increased gain on 2 channels and add discriminators

Readout Electronics

Gain increased to 100mV/fC Width $\sim 0.6\mu$ s

LVDS output from the discriminator

No oscillations No increase in input capacitance

Need to retest with increased input capacitance to account for \sim 3ft of cable between detector and card.

Logic and I/O CAEN Module V1495

- Commercially available
- General purpose VME board
- Can be directly customized by the user
- Field Programmable Gate Arrays (FPGA)

96 inputs with 32 outputs

<u>Demonstrated by Tanja Horn:</u> Transaction time: 0.43 µs Readout rate: 4.7 Mb/s

Conclusion: sufficient for our design rate of 100 kHz – might need two of them

Experience and help available from the JLab DAQ group