Particle Physics Week at UWinnipeg

- Today
 - Jeff Martin (UWinnipeg)

Precision

Electroweak

- Friday (2M77 @ 12:30 pm)
 - Eric Poisson (Guelph)

Black Holes

- Monday (1L13 @ 12:30 pm)
 - Cliff Burgess (Perimeter Inst.)

Physics at the Large Hadron Collider

The Electroweak Force

Jeff Martin Physics

Outline:

- Theory
- Experiment
- UWinnipeg

What Little Boys and Girls are Made Of

What Holds It All Together

- Gravity:
 - Holds the cosmos together
- EM:
 - Holds most other macroscopic objects together
- Strong:
 - Holds atomic nuclei together
- Weak:
 - Responsible for some nuclear decays

The Weak Force: It's weak. It's a force. Get used to it.

- Nuclear Decays.
 - Sunshine.
 - Medical diagnostics, applications in materials sci.
- Other weird facts about the weak force.
 - It's so darn weak.
 - It violates parity (mirror symmetry).
 - It is perhaps the most well-understood and theoretically interesting force. Physicists would love to cast their theories into a theory as beautiful as the weak force.

Telling Stories About Particles

E.g. a story about an electron and a proton.

Quantum Field Theory in a Nutshell

Sum contributions from all possible diagrams

A consequence: the "charge" of the electron (or proton) is not a constant!

charge

chemistry

energy

 The closer you "look", the larger the charge appears to be.

Why the weak force is weak.

Equation continued...

- The Z-particle is very heavy.
- E=mc².
- And if you borrow energy from the vacuum, you must give it back fast. (The Z is "virtual".)

"Electroweak" Theory

- As it happens, γ and Z are manifestations of the same particle (and so are W⁺ and W⁻).
- The Z, W⁺, and W⁻ get their mass, and the photon remains massless, by interactions with the Higgs field.
- The gamma and Z are related by a parameter called: $\sin^2\theta_w$ "the weak mixing angle".

The Beautiful (Standard) Model

Just write down the most general possible Lagrangian respecting $SU(3)_c xSU(2)_L xU(1)_\gamma$ and local gauge invariance.

Yeah, then throw in a Higgs field and boom you have mass.

Why can't gravity be so trivial?

Keep smiling

The Footprints of Giants

Equation continued...

- Maybe there is a "GIANT" particle hidden in that bunch of virtual particles somewhere.
- And it's very heavy, so its effects are very small.
- Possible giant particles: Gravitinos, Leptoquarks, ...

The game: find the effects of that virtual particle by doing very precise measurments of the weak force ($\sin^2\theta_w$).

Through the Looking Glass

- The weak force is the only force that doesn't look the same when viewed in the mirror.
- This is called

"parity violation"

 In fact, that's how we isolate the weak force.

Half-time: Mini-Review

Precise Parity Violation Experiment
-> Precision Measurement of Weak Force
-> Test of Electroweak Theory
-> Discovery of New Particle
-> Pick up Nobel Prize

(Consolation: if you don't discover a new particle, well at least you found that one does NOT exist, which is also valuable for keeping those theorists in check.)

The Weak Force is WEAK!

The "asymmetry" =
$$\frac{P_R - P_L}{P_R + P_L} \approx 100 \,\text{ppb}$$
, and we want to measure it to 1%

Like trying to measure the diameter of the Earth to a precision of 1 cm.

detector

electron

target (LH2)

These experiments are the same to 10⁻⁷

must have excellent control of all "helicity-correlated" beam properties (in this case at 1 nm level)

Jefferson Lab

Caltech Coll. of William and Mary Dartmouth Coll. George Washington U Hampton U **UNAM (Mexico)** Idaho State U Louisiana Tech U MIT Mississippi State U Ohio U Syracuse U **TRIUMF** Jefferson Lab (TJNAF) **U** Conn **U** Manitoba **U New Hampshire** U Northern British Columbia **U** Virginia Virginia Tech Yerevan Physics Institute

and The University of Winnipeg

Light Boom

- A sonic boom happens when a plane exceeds the speed of sound in air.
- A light boom happens when a particle moves faster than the speed of light in the medium.
- Physicists call this the Čerenkov effect.

A Quartz Scanner for Qweak

Concept:

 Scan a small piece of quartz over the surface of the main quartz bars to characterize their performance during the experiment.

Prototyping Tests – Cosmics Testing

New CFI Test Electronics

- Multichannel HV system.
- Multichannel VME ADC/TDC/Scaler
- NIM bin with modules with lemo connectors on them!
- Lemo cables purchased from TRIUMF
- 500 MHz DPO oscilloscope.
- A few more items to be purchased.

Detector Projects at UWinnipeg

Project	Timeframe	People
G-Zero Cherenkov electronics	2005	Alana Lajoie-O'Malley Blair Cardigan Smith
UCNA LED pulsers UCNA muon veto (at LANL)	2006 2006	David Harrison Vince Bagnulo
Qweak Quartz Scanner	2005 – 2009	David Harrison Jie Pan (G) Peiqing Wang (G)
Qweak Compton Diamond Det.		Doug Storey Peiqing Wang (G) Inna Micherdzinska (PD)

Also we have to analyze the data once it comes in! Alex Coppens (G), and G-Zero UG's.

Diamonds are Forever (D. Storey, UWinnipeg undergrad thesis)

Strip map for Compton events 210 µm strips

- Detector to measure the handedness of the electrons.
- New collaboration with Steen ("Mr. Diamond") Dannefaer, UM Engineering, Mississippi State University.
- Crossing my fingers until April 1 (not funded yet).

Summary

- Precision tests of Electroweak Standard Model may lead to interesting discoveries!
- But challenging experiments must be conducted.
- The University of Winnipeg is having an impact on several key experiments in this field.