Diamond Detector Prototyping

Anna Micherdzinska

Outline: Recipe "how to make a diamond detector"

- 1. Buy
- 2. Clean with various acids/bases
- 3. Metallize
- 4. Mount in a nice package and wirebond
- 5. Tests checks to see if you did a good job
- 6. Summary

1. Get a "CERN quality diamond from

Chemical Vapour Deposition (CVD) - method of diamond synthesis that can be compared to frost forming on a window – only the process uses carbon rather than water. A mixture of gases is heated to very high temperatures to produce carbon atoms in the form of a plasma. Out of the gases the diamond crystals can grow on complex, 3D shapes – such as tweeter domes

We bought 10.0 x 10.0 x 0.5 mm CVD diamond

2. Boil in various acids/bases (cleaning)

- Main purpose: to remove all organic and inorganic impurities from the diamond surface and replace H on the surface with O.
- The most time consuming process
- Recipe contains boiling in acids/bases for a few minutes @ ~110°C in:
 - RCA1 ($NH_4OH/H_2O_2/H_2O$) ratio 1/1/5
 - RCA2 (HCI/ H_2O_2/H_2O) ratio 1/1/5
 - HCI/NHO₃/H₂O ratio 1/1/1
 - H₂SO₄/H₂O₂ ratio 1/1
 - every time rinse with DI

Be careful – things to keep in mind

- Avoid touching diamond with tweezers, To handle sample sapphire or quartz plate should be use, on which diamond is mounted via xtal bond or photoresist.
- To rinse, 2 beakers are used
- No metal tweezers; ceramic or teflon

DIAMOND: Front surface;

Back surface

3. Sputter/evaporate on some metal

- Purpose: placing the electrodes on each side of diamond
- Two methods:
 - Shadow mask (out of G10 or Al)
 - Photolitography layer of photoresist
- O₂ Plasma etch

3. Sputter/evaporate on some metal

Metallization Results

4. Mount in a nice package and wirebond

5. Check if we did good job

- Tape test the most brutal, but gives the fastest answer
- I-V curve 1 day measurement,
- Charge Collection Depth (CCD) measurement 1 day measurement

I-V curve

Our sample crystal 250µm thick, 5 x 5 mm,

Not good, contains N:

Charge Collection Depth (CCD) results from Dipankars's prototype diamond

Sample

thickness: 530µm

500 V - maybe - side two

pulse height (V)

Summary

- Coated first test diamond at NSFL (University of Manitoba EE)
- Visited Ohio State University (Harris Kagan group)
 - learned diamond preparation/metallization in context of a second diamond (D. Dutta's)
 - learned multi-strip detector fabrication
 - learned test procedures
 - CCD measurement
 - I-V curve
- Coated third diamond (hopefully did it right) at NSFL