

The Qweak experiment

Anna Micherdzinska

THE UNIVERSITY OF WINNIPEG

for the $\boldsymbol{Q}_{_{\boldsymbol{W}\boldsymbol{e}\boldsymbol{a}\boldsymbol{k}}}$ Collaboration

seminar outline

- **1.** Physics motivation/ what is Q_{weak} ?
- 2. Idea of measurement/ how to extract Q_{weak}
- 3. Experimental setup
- 4. What we should worry about systematics uncertainty...

Let's try our best where we can -> measurement of beam polarization

- 5. Electron Compton polarimeter / how it works
- 6. Usage of diamond in it (diamond vs Si)
- 7. Fabrication steps
- 8. Tests how we know this works properly
- 9. Summary

SM and Weak Charges

The Proton's Weak Charge

measures Q^p – proton's electric charge

measures Q^{p}_{weak} – proton's weak charge

$$A = \frac{2M_{NC}}{M_{EM}} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + F^p(Q^2, \theta)\right]$$

$$\xrightarrow{Q^2 \to 0} \qquad \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + Q^4 B(Q^2)\right]$$

$$for contains G_{E,M}^{\gamma} \text{ and } G_{E,M}^{Z}$$
Well constraint from world data:
HAPPEX, G0, A4, and many others

At tree level in the SM (neglecting the radiative corrections) :

$$Q^{p}_{weak} = 1 - 4 \sin^2 \theta_{W}$$

A sensitive, low-energy extraction of the weak mixing angle.

SM and "Running" of $sin^2\theta_w$

SM Prediction

Erler, Kurylov & Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003)

present:

"d-quark dominated": Cesium APV (Q^{A}_{W}) "pure lepton": SLAC E158 (Q^{e}_{W})

future:

"u-quark dominated": $Q_{weak} (Q^{p}_{W})$ "pure lepton":12 GeV e-e- PV (Q^{e}_{W})

uncertainties in the theoretical interpretation

Qweak will be clean with respect to theoretical interpretation (relay on experimental data to remove the dominant hadronic background)

Sensitivity to TeV Scale

The model (Hamiltonian) predicts what we should see:

A sum of "all" possible processes:

Is there something more we need to include ? -> NEW PHYSICS

$$\begin{array}{c|c} ? \\ + \end{array} \end{array} \xrightarrow{Z'} \left\langle \begin{array}{c} ? \\ + \end{array} \right\rangle \xrightarrow{LQ} \left\langle \begin{array}{c} ? \\ + \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \right\rangle \xrightarrow{\overline{X}} \left\langle \begin{array}{c} \\ \end{array} \end{array}$$

 $Q^{P}_{weak} \& Q^{e}_{weak}$ – Complementary Diagnostics for New Physics

- Qweak measurement will provide a stringent stand alone constraint on Lepto-quark based extensions to the SM.
- Q^p_{weak} (semi-leptonic) and Moller (pure leptonic) together make a powerful program to search for and identify new physics.

Erler, Kurylov, Ramsey-Musolf, PRD 68, 016006 (2003)

The Qweak Collaboration/Experiment:

27 institutions (USA, **Canada**, Mexico, Armenia)

20% manpower from Canada: TRIUMF, University of Manitoba, University of Winnipeg, University of Northern British Columbia

The Experiment will be performed in 2010 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia

CEBAF: CW electron accelerator, energies upto 6 GeV

Good separation of elastic scattering events for Q²=0.03GeV

Very clean elastic separation!

How this will look like in the nature: Experiment Component & Status

What we should be worry about:

Anticipated Q^p_{Weak} Uncertainties

	$\Delta \mathbf{A}_{phys} / \mathbf{A}_{phys}$	$\Delta \mathbf{Q}^{p}_{weak} / \mathbf{Q}^{p}_{weak}$
Statistical (2200 hours production)	2.1%	3.2%
Systematic: Hadronic structure uncertainties Beam polarimetry Absolute Q ² determination Backgrounds Helicity-correlated Beam Properties	 <mark>1.0%</mark> 0.5% 0.5% 0.5%	1.5% <mark>1.5%</mark> 1.0% 0.7% 0.7%
Total	2.5%	4.1%
Experimental sensitivity:	$Q_W^p = (1 - 4s)$	$\sin^2 \theta_W$) \cong 0.0713
Precision measurement: δQ_W^p	$= \pm 4\% \Rightarrow$	$\delta(\sin^2\theta_W) = \pm 0.$

Expected value: $A(Q^2=0.026 \text{ GeV}^2) = -0.234 \text{ ppm} !!!$

Major design goal at low beam energy is to maximize Compton edge

Electron Compton polarimetry

side view of dipole chicane

PC-CVD diamond properties

	Silicon	Diamond	
Band Gap (eV)	1.12	5.45	Low leakage current, shot noise
Electron/Hole mobility (cm²/Vs)	1450/500	2200/1600	Fast signal
Saturation velocity (cm/s)	0.8x10 ⁷	2x10 ⁷	f collection
Breakdown field (V/m)	3x10 ⁵	2.2x10 ⁷	
Dielectric Constant	11.9	5.7	Low capacitance, noise
Displacement energy (eV)	13-20	43	Rad hardness
e-h creation energy (eV)	3.6	13	
Av. e-h pairs per MIP per micron	89	36	Smaller signal
Charge collection distance (micron)	full	~250]]

sc (single crystal) diamonds are available in sizes up to $8 \times 8 \times 0.5 \text{ mm}^3$ pc (polycrystalline) diamonds are available in huge wafers

- we will use a 20 x 20 x 0.5 mm³ square pc-CVD diamond

Strip trackers have been developed by CERN RD-42 and others using that thickness, available from Element Six

How a diamond detector works

e- detector electronics:

- Signal limited by impurities and grain boundaries
- Increases with E-field up to ${\sim}1\text{-}2~\text{V}/\mu\text{m}$
- CCD ("charge collection distance") ~ 250 μm

- 4 x 100 strips
- Fast high rates (~100kHz) expected from Compton Scattering + background
- High Amplification small signal in diamond ~1/4 Silicon

Diamond fabrication process

Step1: Purchase 'CERN grade" diamond from elementsix. (10 x 10 x 0.5 mm³) PC-CVD

Step2: Boil in various acids/bases.

- cleans off the surface
- attempt to replace H-terminated surface with O-terminated (oxidizing agents like H_2O_2)
- follow with low-power plasma etch in O₂ environment

glowing plasma thru etcher viewport

Diamond fabrication process

Step3: Lay down metal

- sputter or evaporate
- test detectors usually done with Cr (50 nm) / Au (200 nm)
- shadow mask used for "dots"
- photolithography ("lift-off") used for strips.
- OSU procedure: dots, then strips, for <u>every</u> diamond.

gold coated diamond @ UM

Diamond fabrication process

Step4: Mount in a package

RD42-owned diamond strip tracker with seven planes, 50 um strip pitch.

Step5: Tests

- Tape: see if metal comes off with tape

- I-V CUrve: apply Voltage and measure leakage current; typ 1pA for 1000V for 6 mm Φ dots

- CCD measurement: use ⁹⁰Sr to find the "charge collection distance" - distance you can pull apart an e-h pair before they are lost to recombination.

A Prototype Diamond Strip Detector - (MSU)

 $10 \times 10 \times 0.5 \text{ mm}^3 \text{ pc-CVD}$ from Element6 Metalization and Lithography: 15 strips (450µm wide) fabricated at Ohio State University

A Prototype Diamond dot Detector - (UW) Test results with ⁹⁰Sr source

Cr/Au 6 mm dot on both sides of diamond fabricated in Winnipeg at NSFL

- **Qweak** -> PV e+p -> e+p would be:
 - the first measurement of the Q^{p}_{weak}
 - Fundamental measurement of the running of $\sin^2\theta_w$ at low energy
 - A sensitive search for new physics at the TeV Scale
 - To achieve 4% precision of Q^{p}_{weak} (0.3% $\sin^{2}\theta_{w}$) systematic needs to be under control

Measurement of e- beam polarization on a 1 % level

- Momentum analyzing e- multistrip detector
- Lower noises and radiation hardness offered by diamond (pCVDD)
- We learned multi-strip detector fabrication and test procedures (CCD measurement, I-V curve)
- We successfully fabricated our first working detector
- Tests of diamond response to e- undergoing
- Fabrication of multistrip detector at UW undergoing

Extra

Bought "CERN grade diamonds from

Chemical Vapour Deposition (CVD) - method of diamond synthesis that can be compared to frost forming on a window – only the process uses carbon rather than water. A mixture of gases is heated to very high temperatures to produce carbon atoms in the form of a plasma. Out of the gases the diamond crystals can grow on complex, 3D shapes – such as tweeter domes

We bought 10.0 x 10.0 x 0.5 mm CVD diamond 1 for MSU and 1 for Winnipeg

UW Mask design for "lift-off"

Mask 4 x 4 inch², drawing made using 'Layout' software

Has positive and negative images with patterns for 10 x 10 mm² test diamond sample and for 21 x 21 mm² sample Fabricated at the

Strip pitch :200um, Strip width: 180 (150) um

Sensitivity to TeV Scale

• Parameterize New Physics contributions in electron-quark Lagrangian

$$\mathsf{L}_{\text{e-q}}^{\text{PV}} = \mathsf{L}_{\text{SM}}^{\text{PV}} + \mathsf{L}_{\text{NEW}}^{\text{PV}} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$$

 A 4% Q^p_{Weak} measurement probes with 95% confidence level for new physics at energy scales to:

 If LHC uncovers new physics, then precision low Q² measurements will be needed to determine charges, coupling constants, etc.

g: coupling constant, Λ : mass scale

Radiation Hardness of Diamond Detectors

CERN R&D: Performance after irradiation with protons

- Little change in S/N after exposure of ~5 Mrad
- 15% change in S/N after an exposure of ~50 Mrad

Si 50% change in S/N after exposure of ~3 Mrad.

Thanks R. Wallny (UCLA)

Estimate for Qweak alone: 3 Mrad

Design Goals

- $(\Delta P/P)_{\text{statistical}} < 1\%$ per hour
 - high laser power
 - high laser energy (green) increases Compton asym.
 - large acceptance for detectors (in energy)
- $(\Delta P/P)_{\text{systematic}} < 1\%$
 - stable beam, small spot in interaction region
 - low backgrounds
 - good energy resolution in detectors
 - high laser energy increases Compton edge

Design Goals Cont'd

- Operable for a variety of beam energies from 1.165 GeV – 11.0 GeV
 - chicane
 - must fit in Hall C

Most design studies currently focused on achieving 1% for Qweak experiment: 1.165 GeV @ 180 uA

Summary of PV Electron Scattering Experiments

Lab/Expt	target	Q^2	A _{phys} ppm	Sensitivity	Status
MIT-Bates - SAMPLE - SAMPLE-II - SAMPLE-III	H_ D_ D_	0.10 0.10 0.04	8.0 8.0 3.0	μ _s + 0.4 _G ^z μ _s + 2.0 _G ^z μ _s + 3.0 _G ^z	published published published
JLab Hall A -HAPPEX -HAPPEXII -Helium-4 -Helium-4 -Lead-208	H₂ H₂ ⁴He ⁴He ²⁰⁸ Pb	0.47 0.11 0.11 0.60 0.01	15.0 1.5 10.0 50.0 0.5	$G_{E}^{s} + 0.39 G_{M}^{s}$ $\rho_{s} + \mu_{p}\mu_{s}$ ρ_{s} G_{E}^{s} <i>neutron skin</i>	published publishing, running running 2006
Mainz - A4 Jlab Hall C	H _₂ ,D₂	0.1-0.25	1.0-10.0	G^s_{E}, G^s_{M}	published x2, running
- GO	H_,D_	0.1-1.0	1.0-30.0	G_{E}^{s}, G_{M}^{s}	publishing,
- Qweak	Ĥ₂ Î	0.03	0.3	Qw	2008
<i>SLAC</i> - E158	H₂	0.02	0.2	Qw	published

K. Kumar

Parity Violating Asymmetry $A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\varepsilon(G_E^p)^2 + \tau(G_M^p)^2} \qquad \underbrace{\left(\begin{array}{c} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{array}\right)}_{q} \frac{1}{2} \frac{1$

Where:

$$A_{E} = \varepsilon(\theta) G_{E}^{Z}(Q^{2}) G_{E}^{\gamma}(Q^{2})$$

$$A_{M} = \tau(Q^{2}) G_{M}^{Z}(Q^{2}) G_{M}^{\gamma}(Q^{2})$$

$$A_{A} = -(1 - 4\sin^{2}\theta_{W}) \varepsilon' G_{A}^{e}(Q^{2}) G_{M}^{\gamma}(Q^{2})$$

$$\tau = \frac{Q^{2}}{4M^{2}}$$

$$\varepsilon = \left[1 + 2(1 + \tau) \tan^{2}\left(\frac{\theta}{2}\right) \right]^{1}$$
kinematic kinematic statements in the second statements of the second statements in the second statements in

forward ep backward ep <mark>backward ed</mark>

kinematical factors

Note: Asymmetry is of order ppm

Q^p_{weak}: Parity-Violating in elastic electron-proton scattering Scatter longitudinally polarized electrons on unpolarized protons e θ $\frac{1}{s}(+$ p p $A_{LR}(\vec{e}, p) = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R} = k(A_{Q_W^p} + A_{H,V} + A_{H,A})$ Quantity of interest = -0.288 ppm $A_{Q_W^p} = Q^2 Q_W^p$ Well constraint from $A_{H,V} = Q_W^n \frac{\epsilon G_E^{p,\gamma} G_E^{n,\gamma} + \tau \overline{G_M^{p,\gamma} G_M^{n,\gamma}}}{\epsilon \left(G_E^{p,\gamma}\right)^2 + \tau \left(G_M^{p,\gamma}\right)^2} + Q_W^s \frac{\epsilon G_E^{p,\gamma} G_E^s + \tau G_M^{p,\gamma} G_M^s}{\epsilon \left(G_E^{p,\gamma}\right)^2 + \tau \left(G_M^{p,\gamma}\right)^2}$ world data: HAPPEX, G0, A4, and many others $A_{H,A} = Q_W^e \frac{\epsilon' G_A^{p,Z} G_M^{p,\gamma}}{\epsilon (G_{P}^{p,\gamma})^2 + \tau (G_M^{p,\gamma})^2}$ $A_{H,V} \sim -0.101 \text{ ppm}$ **A**_{*H,A*} ~ -0.012 ppm $G^{p,Z}_{\Lambda}$ **Axial form factor**

due to

q-q weak interaction

Electron Compton polarimetry

- Position resolution gives momentum of scattered electron (4x100 strips)
- for momentum analysis)
- Independent single-arm measurement of polarization
- Calibration of photon detector (coincidence mode)
- Design for 1% polarization determination for BOTH detectors

