

Focal Plane Scanner

Jie Pan * *

for the scanner working group

Laura Cobus*, Anna Micherdzinska* Jeff Martin*, Peiqing Wang⁺

* University of Winnipeg / * University of Manitoba

July 2007 Qweak Collaboration Meeting, Vancouver

Outline

Overview

- ---- motivation for using focal plane scanner
- ---- design criteria

Geant4 simulation

- ---- detector performance and some results
- ---- rates estimation

Prototyping test

- ---- 1- tube prototype assembly
- ---- cosmic ray tests with one-tube prototype
- ---- some results and problems
- ---- 2- tube prototype design
- Status and plan

Motivation for Focal Plane Scanner

- Momentum transfer determination, background studies, will be performed at 1 nA beam current using the tracking system
- Region III is operable up to 100 nA
- Production run will be at 180 μ A. Tracking detectors are inoperable at such a high rate.
- Need a way to extrapolate the low current measurements to the high current situation (over 3 orders of magnitude!).

Idea: use a small, scanning detector to perform the extrapolation ==> "FOCAL PLANE SCANNER"

A scanning Cherenkov detector mounted on the focal plane with very small active area is used to sense high- energy electrons so as to determine the electrons spatial distribution in focal plane, operable at all beam currents.

Design criteria:

- Small (1 cm²) active area
- 1 MHz max rate allows operation in counting mode with two PMTs.
- Operable at both high and low current.
- Coincidence to reduce background

Scanner also needs:

- Readout electronics
- 2D linear motion system

Geant4 Monte Carlo Simulation for Scanner Performance

Light production and propagation in scanner

Simulation Results

- Very little background from air- core light pipe
- Light yield quantitatively understood

Calculating Singles and Accidental rate

Comparing rate on quartz to rate on background

Rate on background

Rate on quartz

$$R_{accidental} = R_{singles1} * R_{singles2} * \tau_{12}$$

Prototype - one tube assembly only

Cutting Quartz With Precise Saw

NSFL at Univ. of Manitoba

unpolished quartz, 1 cm x 1 cm x 2 cm

Prototyping Test

DAQ – MIDAS based, online histogram / offline analysis

Cosmic ray tests with one-tube assembly

- 2" diameter, 50 cm long air core light guide
- Reflection material "Miro 4" (ALANOD)
- XP2020Q PMT (2 inch)
- A "crude" quartz (~ 0.8cm*1.2cm*2cm, partially polished)
 & a "fine" quartz (1cm*1cm*2cm, polished)
- Quartzes are wrapped by Aluminum foil
- Top & bottom trigger paddles provide coincident trigger signal
- HV on PMT = 2300V

Prototyping Test

-- Light yield optimization in prototype underway

Light collection at PMT

Some experiment results

Crude quartz:		Simulation:	
tilt angle	# P.E.	tilt angle	# P.E.
45 deg	10.2 ± 0.5	45 deg	8.8 ± 0.2
0 deg	9.6 ± 1.7	0 deg	5.1 ± 0.1
- 45 deg	7.8 ± 0.5		
		<<== Compare to experiment	
Fine quartz:			
tile angle	# P.E.		
45 deg	8.5 ± 1.2		
0 deg	7.2 ± 0.7		

Total light yield from quartz is low + reflection loss + PMT quantum efficiency ==>> only ~10 photo- electrons

It CAN be discriminated from background/ noise, but with some difficulty (prone to be hidden in noise)

Considering:

Increase light yield from quartz ==>> use pre- radiator? use white paint or white paper wrap?

Decrease reflection loss ==>> use the best reflect material choose different geometry?

Reduce background ==>> use vacuum tube? fill CO₂ in the tube?

2-Tube Solidworks Model

Prototype will be constructed in the mechanical shop at U of M or TRIUMF

Status and plan

- The simulation for detector performance has been benchmarked. We'll concentrate on simulation about pre-radiator and rate estimation.
- Cosmic ray tests with 1- tube prototype are ongoing. continue 1- tube prototype tests construct 2- tube assembly prototype, do cosmic ray tests and then do beam test with it.

